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Abstract We refine and advance a notion of parallel composition to achieve for the
first time a stability proof and empirical demonstration of a steady-state gait on a
highly coupled 3DOF legged platform controlled by two simple (decoupled) feed-
back laws that provably stabilize in isolation two simple 1DOF mechanical subsys-
tems. Specifically, we stabilize a limit cycle on a tailed monoped to excite sustained
sagittal plane translational hopping energized by tail-pumping during stance. The
constituent subsystems for which the controllers are nominally designed are: (i) a
purely vertical bouncing mass (controlled by injecting energy into its springy shaft);
and (ii) a purely tangential rimless wheel (controlled by adjusting the inter-spoke
stepping angle). We introduce the use of averaging methods in legged locomotion to
prove that this “parallel composition” of independent 1DOF controllers achieves an
asymptotically stable closed-loop hybrid limit cycle for a dynamical system that ap-
proximates the 3DOF stance mechanics of our physical tailed monoped. We present
experimental data demonstrating stability and close agreement between the motion
of the physical hopping machine and numerical simulations of the (mathematically
tractable) approximating model.

1 Introduction

Dimension reduction enjoys a long analytical tradition in dynamical systems theory
generally [1] and locomotion particularly [2], but the synthesis of complex, high
dimensional dynamical behavior from simple low dimensional components is far
less considered. Notwithstanding some early examples of anchored templates [3] in
physical [4, 5] and numerical [6, 7] studies, the only presently available systematic
account of how to embed low dimensional target dynamics in higher dimensional
mechanical bodies entails inverse dynamics along the quotient space down to the
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attracting submanifold [8, 9]. Yet well before any of this work, Raibert had already
shown empirically how to synthesize stable one-, two-, and four-legged spatial run-
ning behavior by parallel composition of simple, decoupled, one degree of freedom
vertical, horizontal, and rotational feedback laws [10].

Motivation and contributions This paper builds on and significantly advances the
ideas of [11, 12] to achieve what we believe to be the first formal account of such
anchor synthesis via template composition. We examine an approximate model of
a tailed monoped that exhibits stable sagittal plane translational hopping motion
energized by tail pumping during stance. The tail controller excites its actuator by
applying a new purely vertical hopping regulator [13] to the the robot’s shank os-
cillation phase. The stepping controller adjusts the next leg touchdown angle by
applying a modified active rimless wheel speed regulator [14] to the angular mo-
mentum of the robot’s mass center relative to the pinned toe. We show that both
the vertical and fore-aft regulators, acting alone on their respective one degree of
freedom template plants in isolation, succeed in stabilizing hopping height and hor-
izontal speed. We then show that this parallel composition of template controllers
stabilizes the hopping translational gait of the highly coupled approximate model.1

This paper introduces as well (to the best of our knowledge for the first time)
in the locomotion literature the dynamical systems methodology of averaging. Har-
nessing specific symmetries in motion and force played a major role in Raibert’s
compositional methods [10] and we express his intuition here by integrating them
out (or in) along the stance phase. Such appeal to averaging symmetric dynamical
influences gains its theoretical traction [1, 15] because our mechanical system exe-
cutes periodic orbits in its locomotory steady state along which (loosely speaking)
the energy levels of various compartments of the dynamics evolve at a much slower
time-scale than does the phase. The right confluence of these circumstances has the
fortunate effect of insuring not only that the averaged dynamics closely approximate
the original but guaranteeing that their steady state (limit cycle stability) properties
are identical. Recourse to averaging, in turn, motivates a new, relaxed version of
the template-anchor relation [3]. We develop this new idea using our motivational
example in Section 4, but we leave a formal definition to future work.

Organization and results We first develop some mathematical tools for averaging
a particular class (Def. 1) of hybrid systems in Section 2. Prop. 1 extends the clas-
sical averaging result [1] to our application domain. An application-focused reader
may skip this section initially and refer back at its usage in Sections 3-4.

In Section 3, we present two classical 1DOF template systems as phase-averageable
hybrid systems: the vertical hopper [13] and the rimless wheel [16] (modified to
include some control affordance [14]). We present template controllers for these
template systems (inspired by [10, 17]) that provably stabilize the 1DOF plants.

In Section 4, we show how to take the parallel composition of these two simple
constituents and apply it to a 3DOF model of the tailed SLIP (an approximation to

1 The chief advances beyond the initial composition study of [11] are that: (i) we achieve a stability
proof of the steady state gait limit cycle for the 4DOF closed loop tailed biped (Fig. 1); and (ii) we
are able to do so for a far less restricted range of tail-energizing energies (17).
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a physical system that we have built). We use averaging theory to demonstrate that
the desired steady state hopping behavior is indeed rendered asymptotically stable
in this highly coupled 3DOF model.

In Section 5 we show simulation evidence for our theoretical claims, and data
from a physical hopping machine showing (in spite of our approximations in the
model of Section 4) qualitative behavior quite similar to the simulation results.

The contributions of this paper can be summarized as (a) introduction of a
new notion of “average anchoring,” and an extension of classical averaging the-
ory (Prop. 1) to a relevant class of hybrid systems, (b) “unpacking” the classic SLIP
template [18] as a “cross-product” (in our relaxed sense of anchoring) of a vertical
heartbeat [13] and a rimless wheel [16], and (c) a proof of stability of compositional
control using decoupled controllers in a coupled 3DOF tailed SLIP model system.

A note on notation The symbol a? refers to an “energy” coordinate for subsystem
? (not necessarily mechanical energy), which changes slowly relative to the phase
of the system (Defn. 1). The bold subscript is also used for other symbols pertaining
to a specific subsystem; e.g. kv is the gain chosen for the vertical subsystem. We
have collected references to important equations and symbols in Table 1.

2 Hybrid Averaging

For our analysis in this paper will focus on hybrid systems with a single domain.
We specialize the general definition in [19], of a hybrid system with 1 domain, to
add properties conducive to averaging (Prop. 1).

Definition 1. Given ε > 0 (a “separation of time scales” parameter quantifying slow
energy-phase dynamics), an averageable hybrid system is a tuple (A, f,R) with

i) a topological disk A ≈ Rd as the “energy” domain,
ii) a C2 non-autonomous (“phase-varying”) vector field f : A × [0, Ts] × R+ →
TA, where Ts > 0, such that the system dynamics are

ẋ = εf(x, t, ε), and (1)

iii) an energy reset map, R : A → A that is ε-close to the identity in the sense
that there is some array-valued smooth map, S(x) such that the equilibrium
of f is also a fixed point of R, and the Jacobian of R is DR = I + εS, and
S(x) + TsDf(x) is full rank at each x.

Remark Though the definition above is sufficient for this paper, we observe that
the triple (A, f,R) is a mere specialization of a hybrid system as defined in [19,
Def. 1]. To see how, think of decoupled “phase” dynamics ψ̇ = ω being appended
to the state, yielding a standard hybrid system H = (D,F,G,R), where D := A×
[0, Ts], F := [ ωfω ], G := A× {Ts}, R := [R0 ] with a single hybrid mode. The last
condition above is difficult to check, and we leave a more complete generalization
of this result to future work.
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The “averaging” technique [1] can be extended to a method of approximating
(with error bounds) solutions of the Ts-periodic system (1) with an averaged hybrid
system by replacing f in (1) with

dx

dt
=

ε

Ts

ˆ Ts

0

f(x, t, 0) dt =: εf(x), (2)

with the same decoupled phase, guard set and reset map.
Additionally, the Poincaré return maps for (1) and (2) can both be defined as

usual, using A× {Ts} as the section.

Proposition 1 (Hybrid averaging). Let (A, f,R) be a averageable hybrid system.
If p0 is a hyperbolic fixed point of an equilibrium of (2), then there exists ε0 > 0
such that for all 0 < ε ≤ ε0, (1) possesses a unique hyperbolic periodic orbit
r(p0) + O(ε), of the same stability type as p0.

Proof (adapted from [1]). Our system satisfies all conditions required for the proof
of Thm. 4.1.1(i) in [1] on the set t ∈ (0, Ts]. We conclude that if at ψ = 0+ (just
after the reset), |x0 − y0| = O(ε), then |x(t) − y(t)| = O(ε) on a time scale
t ∼ 1/ε. Construct the change of coordinates x = y + εw(y, t, ε), as in [1], so
that (1) becomes

dy

dt
= εf(y) + ε2f1(y, t, ε), (3)

where f1 is a lumped O(ε2) “remainder term.”
With the cross-section Σ := {(y, t) : t = Ts}, and U ⊂ Σ, an open set, the

Poincaré maps P0 : U → Σ and Pε : U → Σ can be defined as usual (reset
composed by a flow for time Ts) for the systems (2) and (3), respectively. Pε is
ε2-close to P0, since (a) r is the same for both, and (b) the “time to impact” is fixed
and independent of ε (decoupled phase dynamics).

Since p0 is a hyperbolic fixed point of P0, it is also a hyperbolic fixed point of
DP0(p0) = eεTsDf(R(p0))DR(p0) (DR is full rank for diffeomorphism R). There-
fore, substiuting Dr = I + εS, the matrix

lim
ε→0

1

ε
(DP0(p0)− I) = lim

ε→0

1

ε
(I + εTsDf |R(p0))DR(p0)− I

= S + TsDf |R(p0) (4)

is invertible (from the resonance-free condition of Prop. 1). Since Pε is ε-close toP0,
limε→0

1
ε (DPε(p0) − I) is the same as the RHS of (4). Hence, using the implicit

function theorem we see that the rank of 1
ε (DPε(p0) − I) form a smooth curve

(pε, ε). Now pε is a fixed point of Pε, and the local Taylor expansion is pε = p0 +
O(ε). The eigenvalues of DPε(pε) are ε2-close to those of DP0(p0), since R is a
diffeomorphism, and

DPε = [exp(εTsDf |R(p0)) + O(ε2)] ·DR(p0).
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Fig. 1 The vertical hopper [13] and rimless wheel [16] template plants (left), and their correspond-
ing equations of motion, and (right) the tailed SLIP model, labeled with configuration variables
(black), actuators (red), and model parameters (blue).

Table 1 References to decoupled controllers and important ODE’s and vector fields.

Vertical hopper Rimless wheel Anchor

Controller uv (8) uh(ah) (13) ≈ uv(t)× uh(ah) (16), (23)

Dynamics r̈ (5), fv (9) θ̈, fh (11) q̈ (15)

Averaged dynamics fv (10) fh = fh (11) f = fv × fh (19), (22)

So, (3) has a periodic orbit ε-close to R(p0), and by the coordinate change (3), (1)
has a similar orbit. The stability properties of the periodic orbits of (1) and (2) are
identical since DPε(pε) is ε2-close to DP0(p0). ut

3 Templates as Constituents of Planar Hopping

Based on the motivation in Section 1, we attempt to develop a planar hopping be-
havior as a composition of (a) a vertical hopper, as empirically demonstrated by [10]
and studied in [13, 11], and (b) a rimless wheel [16] with liftoff impulses [14]. As
Fig. 1 notionally shows, these templates are “anchored” (Section 4) in the Tailed
SLIP model our physical platform (Section 5) closely resembles.

3.1 Controlled 1DOF Vertical Hopper

Our template plant for vertical hopping is a point mass connected to a vertically-
constrained series-elastic damped leg (Fig. 1, top left). As shown in [11], this 1DOF
system can be stabilized to arbitrary hopping heights by recourse to an appropriately
designed phase-locked, oscillatory pattern of energetic excitation entering through
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the shank (note the contrast to the hybrid energization strategy of [10, 13]). We
impose the following additional assumption and follow [11]:

Assumption 1 (Weakly nonlinear oscillator). The vertical hopper is an LTI spring-
mass-damper system actuated by a possibly nonlinear O(ε) force, where ε � ω.

Stance dynamics Define the normalized leg length r := r̃ − ρ+mg/ω2, where r̃
is the physical length of the spring with rest length ρ. As in [11], the dynamics of a
linear oscillator with small (assumption 1) damping are given by

r̈ + ω2r = −uv − εβṙ =⇒ ẋ = −ω
[
0 −1
1 0

]
x+

[
0

−uv/ω − εβx2
]
, (5)

where x :=
[
r
ṙ/ω

]
. Define the vertical energy av := ‖x‖, and note that by

assumption 1, for uv = O(ε), the corresponding phase coordinate is trivial; if
tan∠x := −x1/x2 (such that “stance” is from ∠x = 0 to π), then

d

dt
∠x = −ω − εβx1x2

a2v
− uvx1

a2vω
= −ω + O(ε). (6)

Thus the phase evolution is in the form of a perturbation problem [15, (10.1)]. The
nominal system, d

dt∠x = −ω has a trivial solution (∠x)nom = −ωt. Using [15,
Thm. 10.1], we conclude that for small ε, the perturbed system has a unique solution
of the form ∠x = −ωt+O(ε). Note that no “constant of integration” appears since
at t = 0 (touchdown), r(0) = 0, ṙ(0) < 0, and so ∠x(0) = 0. Consequently,

x2 = av cos∠x = av cos(−ωt+ O(ε))

= av
(
cosωt cos(O(ε)) + sinωt sin(O(ε))

)
= av(cosωt+ O(ε)), (7)

since cos(O(ε)) = 1− O(ε2) and sin(O(ε)) = O(ε). Following [11], set

uv := −εkvω cosωt, (8)

and observe that

ȧv = εfv(av, t, ε) :=
εx2
av

(kv cosωt− βx2) (9)

≈ εfv(av) :=
ε

π/ω

ˆ π/ω

0

fv(av, t, 0) dt =
ε

2
(kv − βav), (10)

where the bottom row corresponds to a usage of Prop. 1 on the limit cycle, and we
used (7) to eliminate O(ε2) terms.

Hybrid guard and reset For this system and our periodic forcing (8), we observe
that the dynamics (9) are π/ω-periodic. Roughly following [13], we collapse the
“flight map” to a reflection of the vertical velocity, or Rv(av) = av, and the guard
set is Gv = {x1 = 0} (lift-off occurs approximately at adjusted rest length).
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Return map stability From the simple from (10), it is easy to see that the averaged
hybrid system has a stable limit cycle at av = kv/β, and hence by Prop. 1, we can
conclude that the vertical hopper plant (5) has a stable limit cycle.

3.2 Controlled Forward Speed: 1DOF Active Rimless Wheel

Our conceptual physical template for an isolated fore-aft system stabilized by “step-
ping” is inspired by the rimless wheel due to [16] (parameters defined in Fig. 1), but
now fitted out with a controllable liftoff impulse, δ (inspired by [14]).

Assumption 2 (Gravity approximation). As in [20], we assume that the effect of
gravity is invariant to leg angle.

The conservative approximation is useful in our search for sufficient conditions
for an analytical stability proof (Prop. 3), but we empirically observe stability with
large leg angles (Section 5), indicating that it is not necessary.

Stance dynamics The implication of assumption 2 on the rimless wheel (phys-
ically manifested when the interspoke angle is small compared to the slope an-
gle) is that angular acceleration is roughly constant through stance. Using notation
from [16], and angular momentum about the toe ah := `2θ̇ as the horizontal energy,

θ̈ = σ2γ =⇒ ȧh = εfh := σ2γ/`2, (11)

where σ is a dimensionless frequency and ` is the spoke length (Fig. 1) [16]. We
observe that the right hand side is a constant, hence bounded.

Reset From [16, (5)], the rimless wheel has a restitution coefficient η := 1−σ2(1−
cos 2α0). The controlled reset map (with our modification to [16, (3)]) is

a+h = ahη + δ = ah + uh, (12)

where in the last equality, we parameterize the liftoff impulse as δ = (1−η)ah+uh
for notational convenience. Using the discrete proportional controller (suggested by
the “stepping” controller [10]) with kh � 1,

uh(ah) = kh(a
∗
h − ah), (13)

the controlled reset map becomes Rh(ah) = ah + kh(a
∗
h − ah). The guard set is

{θ = −α0}.

Return map stability The integrable stance dynamics (11) together with the reset
map above give us the closed-form return map

Ph(ah) := ah + kh(a
∗
h − ah) + ν0, (14)
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Fig. 2 A cartoon depicting
the classical notion of an-
choring [3] (top) and the new
notion introduced in this paper
based on averaging (bottom)
as conceptual mechanisms
of dimension reduction (Sec-
tion 1), where the blue line
represents a template flow,
and the red lines depict flows
on the anchoring body.

Classical

Average

where ν0 :=
´ Ts

0
σ2γ/`2 dt is the leg sweep over a fixed stance duration Ts. The

Jacobian is DPh(ah) = 1 − kh, and so the system will stabilize at the fixed point
ah = a∗h + ν0/kh.

Remarks Both the continuous (11) and discrete (14) parts of the dynamics exhibit
a θ-equivariance, and since an encoding of a planar hopping task [10, Chap. 2]
is also θ-invariant, we work in the quotient space with coordinates given by the
simple projection (θ, θ̇) 7→ ah, mapping the second order system (11) to an energy
coordinate without a corresponding phase.

4 Average Anchoring in 3DOF Tail-Energized SLIP

The classical notion [3] of anchoring calls for the template dynamics (blue arrows
in the top picture of Fig. 2) to be embedded in that of the anchoring body as an
attracting invariant submanifold (red arrows in that same picture) of the left hand
with conjugate restriction dynamics (depicted by the red lining up with blue arrows
on the embedded submanifold). Averaging theory guarantees that the anchor must
have a stable cycle (red arrows in the bottom picture of Fig. 2) that is close to an
embedding of the template’s (blue arrows, again, in the bottom picture), but the
actual unaveraged (time-varying) anchor will in general have no related invariant
manifolds nor dynamical conjugacy.

Our candidate “anchoring” body is a planar pogo stick with a light tail (Fig. 1),
where the actuator τt is connected between the leg and the tail. In stance phase, the
toe of the springy leg is pinned to the ground, and as a result, the robot is dynam-
ically constrained to 3-DOF. Even though the body has two masses, the dynamics
are somewhat simplified by the following assumption:

Assumption 3 (Light tail). The tail mass is small, i.e.mt � m (such that the center
of mass is configuration-independent), but the tail inertia, it := mtρ

2
t , is significant.

Looking ahead to (15), this assumption allows us to use the tail as an inertial
actuator on the leg spring through τt even though mt � m, while avoiding Coriolis
forces due to motion of the center of mass.
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4.1 Average Invariance of Template Flows in Stance Dynamics

In this subsection, we examine the stance behavior of the coupled tailed monoped
in steady-state operation (we examine stability in the next subsection). The present
method of proof requires (what simulation and empirical results suggest to be) a
conservative assumption of operation in a slow fore-aft speed regime:

Assumption 4 (Slow fore-aft speed). The leg angular velocity θ̇ = O(ε), or equiv-
alently, the leg sweep is O(ε) of π/ω.

Additionally, we make a physically reasonable assumption about leg deflection:

Assumption 5. The leg deflection relative to its rest length is av/ρ = O(ε).

Stance dynamics We use assumption 3 (specifically, taking a limit mt/m → 0
with finite it) in a Lagrangian formulation with variables as in Fig. 1, to get the
following stance dynamics (3 of the 4 DOF’s in [12, (39)]):

r̈ = −ω2r − εβṙ + r̃θ̇2 − τt cos ξ

ρtm
+ g(1− cos θ),

θ̈ = −2ṙθ̇

r̃
− τt sin ξ

ρtmr̃
− g

r̃
sin θ,

ξ̈ = τt/it, (15)

where ξ is the leg-tail angle (between which joints τt acts directly), r is the nor-
malized leg extension as in Section 3.1, and β is now the mass-specific damping
coefficient. Our specific usage of assumption 3 in the equations of motion is that

• we assert that mb + mt ≈ mb, resulting in the dropping of Coriolis forces
resulting from the configuration-dependent CoM,

• the tail can now be thought of as an inertial source of reaction forces on the
(r̈, θ̈) terms (which have familiar “SLIP-like” dynamics), as seen in the τt terms
coupled through the physical tail angle, ξ).

We introduce as a stance controller for the coupled plant (15) a scaled version of the
simple stance controller for the isolated vertical system (8),

τt := mρtuv = εkvωmρt cosωt. (16)

Decoupled tail excitation The tail dynamics, ξ̈, take the form of a simple double
integrator (15). When driven by the template controller (Table 1), and reset to ξ(0) =
− εkvmρtωit

during flight, the tail trajectory is

ξ(t) = −εkvmρt
ωit

cosωt =: −at cosωt, (17)

where, for the purposes of design, we construe the amplitude of the tail oscillation as
the energy contained in the tail compartment. Note that this represents a substantial
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generalization and thus a significant advance beyond the strict assumptions in [11]
regarding the analysis of a similar planar hopping model: in this paper we allow for
finite (and possibly large) tail motions, which couple into the other DOFs (15).

Proposition 2. The averaged tailed SLIP stance vector field—but not the unapprox-
imated one, obtained from (15)—is conjugate to a cross product of the averaged
template vector fields (10), (11).

Proof. Because it is a decoupled double integrator, the feedforward influence of the
tail subsystem (the output of the last row of (15), on the (r, θ) dynamics) can be
represented as an independent time varying disturbance input, ξ, given in (17).

In the radial dynamics from (15), as in Section 3.1, let x :=
[
r
ṙ/ω

]
. Reusing

assumption 1, the phase of the vertical hopper is interchangeable with time, ∠x =
−ωt. Similar to (9), setting av := ‖x‖, and using (17),

ȧv = εfv(av, t, ε) = ε cos2 ωt (kv cos (−at cosωt)− βav) + O(ε2) (18)

≈ εfv(av) =
ε

π/ω

ˆ
S

fv(av, t, 0) dt =
ε

2
(k̃v − βav), (19)

where the O(ε2) term in (18) consists of the following terms from the first row
of (15), and the vertical “phase lock error” (7):

r̃θ̇2 + g(1− cos θ)− εβavO(ε), (20)

and use assumption 4 to get θ̇2 = O(ε2) as well as 1− cos θ ≈ θ2/2 = O(ε2).
In (19), k̃v := kv(2J1(at)/at − J2(at)), and Ji are Bessel functions of the first

kind [21] that act as an “attenuation” of our vertical gain kv (bear in mind that at,
introduced in (17) is a designed energizing magnitude term held constant for the
duration of each stance), as the tail sweep gets larger (cf. Fig. 3).

In the leg-angle dynamics, define ah := r̃2θ̇ as in the template (Section 3.2), and
use assumption 2, and assumption 5 in the averaging step, to get:

ȧh = εfh(ah, t, ε) = −εkvω ·mρt cosωt
(ρ(1− av/ρ sinωt) sin ξ

mρt

)
(21)

≈ εfh(ah) = −εkvω · ρJ1(at), (22)

where J1(at) amplifies (with the sign convention of Fig. 1, ah < 0 when the robot
is making forward progress) the fore-aft acceleration as shown in Fig. 3.

Comparing (19) to (10), and (22) to (11), we see that the averaged body dynamics
are conjugate to the template dynamics. Moreover, it is clear that (9) and (18) are
not conjugate vector fields, and neither are (11) and (21). ut

Remark Compared to classical anchoring [3], conjugacy of averaged fields is the
analogue of the invariance of the embedded submanifold. However, note that there
is no analogue of the “attraction” property yet (i.e. do asymmetric orbits attract to
more symmetric ones?). We aim to study the “transient” behavior in future work.
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Fig. 3 Gain scaling terms
k̃v/kv (blue, (19)) and
J1(at) (orange, (22)), as
a function of the tail sweep.
As at → 0, we recover the
unscaled vertical template
dynamics, but with larger tail
sweep (the thin vertical line
corresponds to empirically
observed tail sweeps from
Section 5), the equilibrium
hopping height decreases, and
the forward speed increases.
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4.2 Stability Derived from Templates

The strong relation between the averaged and unaveraged systems guaranteed by
Prop. 1 allows us to conclude existence of a periodic orbit as well as its hyperbolic
stability type from that of the averaged system, which we calculate below.

Reset map for Tailed SLIP “Stepping” (setting the leg touchdown angle θtd+ as a
function of the liftoff state, θlo, and a desired leg angular momentum a∗h) can be used
to control forward speed for a pendular walking/running system [10]. In particular,
a slight modification of the “scissor algorithm” [10, Chap. 5] yields

θtd = −θlo + uh,where uh := kh(a
∗
h − ah), (23)

Assumption 3 also simplifies the flight map, since the CoM flight behavior is well
represented by a ballistic motion. The guard set for the “flight” reset is identical to
that for the embedded radial coordinate r (Section 3.1), G(av, ah, t) = Gv(av, t)

We transform the liftoff velocity vector into Cartesian coordinates, reflect the
vertical component (ballistic flight) and transform back to polar coordinates to get[

ρθ̇
ṙ

]
td+

= Rot(−θtd+)
[
1
−1
]
Rot(θlo)

[
ρθ̇
ṙ

]
lo

,

and as a last step we can substitute in (23) with a :=
[
ah
av

]
(with the components as

defined just before (19), (22)) to get

atd+ =
[
1
−1
] [
ρ
1

]
Rot(−θtd+)

[
1
−1
]
Rot(θlo)

[
1/ρ

1

]
alo

=⇒ R(a)
(23)
=
[
cosuh −ρ sinuh
sinuh/ρ cosuh

]
a. (24)

As apparent from (24), this map does not depend upon the leg angle, θ (from (23),
uh only depends on θ̇). Together with the equivariance of the continous dynamics
with θ (assumption 2), this allows us to work in the ah-quotient space (as in Sec-
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tion 3.2). A drawback of this reduction is that the hopping system exhibits pairs of
antisymmetric steps [10, Chap. 5]: a period-2 evolution of non-neutral stances which
are each mirror-symmetric to the subsequent step. In our empirical trials, with small
leg sweep (assumption 4) we did not observe any significantly skewed stances.

Existence of periodic orbits With fixed kv (and by (17), at) the averaged fields
(19), (21) yield simple flows of the form

fπ(a) =
[
ah − ν1,
ν2av + ν3

]
, (25)

where a := (ah, av), ν1, 0 < ν2 < 1 and ν3 are constants depending only on kv
and system parameters.

The zeros ofQ(a) = a−R◦fπ(a) lie on periodic orbits of the averaged system.
By the implicit function theorem, we only need to find an open neighborhood of a
where DaQ is full rank to check that periodic orbits exist. By design of uh, kh � 1
(before (13)), and so from (24),

DaR =
[
cosuh −ρ sinuh
sinuh/ρ cosuh

]
+ O(kh) ≈

[
cosuh −ρ sinuh
sinuh/ρ cosuh

]
, (26)

and so, combining with Df
π

from (25), DaQ ≈ I −
[
1
ν2

] [
cosuh −ρ sinuh
sinuh/ρ cosuh

]
,

which is full rank as long as the right summand has no unity eigenvalues (sufficient
condition). Since ν2 < 1, uh 6= 0 is sufficient to ensure this.

Proposition 3 (Stability). Tailed SLIP limit cycles have locally stable return maps.

Proof. We examine the stability properties of the discrete dynamical system a 7→
P (a), the Jacobian of which factors into

DaP |a = Da(fπ ◦ R)|a = Dafπ|R(a) · DaR|a. (27)

Repeating the argument and calculation (26), for sufficiently small kh, DaP (a) =[
1
ν2

] [
cosuh −ρ sinuh
sinuh/ρ cosuh

]
. The eigenvalues of DaP are in the stable region iff its

determinant and trace satisfy (i) det < 1, (ii) det > tr −1, and (iii) det > −tr −1.
A simple calculation yields

det(DaP ) = ν2, tr (DaP ) = (1 + ν2) cosuh, (28)

and since 0 < ν2 < 1, DaP has stable eigenvalues. ut

5 Numerical and Empirical Results

The theoretical development in this paper is motivated by the implementation of
tail-energized hopping on the Penn Jerboa [12], a tailed monopedal robot (with co-
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Fig. 4 Results from numerical simulation showing the evolution of various coordinates during
a single stance phase: full Jerboa [12] simulation (no assumption 3, analytically intractable) with
pitch immobilized (blue), tailed SLIP as modeled in this paper (15) (red), and the isolated templates
of Section 3 (green).

incident hip and tail axes) in the sagittal plane. To demonstrate different facets of
the ideas presented here, we present both simulation results, as well as experiments
on the physical hardware.

Relationship to model (Section 4) The model presented earlier in the paper is a
reasonable representation of the physical platform, but with the distinctions

• the robot has an additional “body pitch” DOF, which we immobilize using a
boom for our experiments, and

• the tail actuator on the robot is attached between the tail and the body, whereas
in the model it is attached between the tail and leg. For small leg sweep (as-
sumption 4), the empirical behavior of either appears to be very similar.

Assumption 3 is reasonably satisfied by the physical platform: the tail mass is
0.15 kg, tail length is 0.3 m, while the body mass and inertia are (approx) 2.27
Kg and 0.025 Kg-m2 respectively. That is, the tail mass is 6.6% of body mass, but
tail inertia is 54% of body inertia. The overall control architecture of the robot is
implemented as in Table 1.

Numerical simulation Fig. 4 shows simulation traces at (or near) a limit cycle for
different plant models. The various parameters used in the simulation (matched to
the robot hardware as much as possible): m = 2.27 Kg, ρ = 0.12 m, mt = 0.15 Kg,
ρt = 0.3 m, ω = 36.35 rad/s, and εkv = 0.118. The template plants and the analyt-
ically intractable Jerboa simulations both simulations all attracted to a steady-state
hopping behavior, and we picked the “limit cycle” stance trajectories for Fig. 4 by
simply allowing the simulation to run for some time.

The effect of averaging is apparent in the traces: while the qualitative system
behavior is identical for the various plant models, the red and blue curves suffer
from periodic, within-stance, perturbations (mechanical coupling interactions that
we reimagine as time-varying disturbances to be “integrated out.”).
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Fig. 5 Left: The physical platform used in this paper, the Penn Jerboa [12]. Right: stance data
(mean and standard deviation) for a single trial on the robot, averaged over 36 steps. The z and
x traces show rough profile comparable to the r, θ profiles in Fig. 4 modulo the polar transform
(which leaves the profiles intact for small leg angles as we have assumed in assumption 4), and the
ξ traces shows the expected profile (17) with our sinusoidal driving input.
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Fig. 6 We demonstrate stability and control authority over the hopping behavior by plotting
(ground truth) fore-aft (left) and vertical (right) position for two trials where we imposed a step
change in the desired energy levels, ah (reversed at t = 20 s in the left plot) and av (increased by
33% at t = 15 s in the right plots). The “gaps” in the data are due to unfortunate communication
dropouts with the instrumented boom.

Additionally, the gain scaling effect showed in Fig. 3 can be seen in the rightmost
column of Fig. 4. For the same kv and other parameters, the body (red, blue) has
lower vertical energy and higher fore-aft energy than the template (green dashed).

Robot experiments For Jerboa [12] experiments, we constrain out-of-plane mo-
tion as well as body pitch using a boom. Qualitatively, the robot can hop stably
(in multiple trials we recorded approximately 50 steps, and the experiment was ter-
minated before failure), at limited speeds forward, backward, or in place. We have
documented some trials in the supplementary video [22]. Fig. 6 shows ground-truth
time series data from the instrumented boom demonstrating that the tail-energized
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Table 2 Summary of 7 in-place hopping trials with height transition.

Pre-transition Post-transition
Increase in kv Mean ascent (cm) Std. dev. (cm) Mean ascent (cm) Std. dev. (cm)
33 % 8.87692 3.14861 10.2622 4.34376

hopping strategy can attain stable hopping with tunable hopping height and fore-
aft speed. Note that the high-frequency noise is caused by parasitic oscillations in
the boom tube (which can be seen in the supplementary video [22]), and the blank
portions are due to communication stalls in the data collection system.

In the left plot, the desired forward hopping speed is reversed at t = 20 s and it
can be seen that the robot begins hopping backwards in a few strides.

In the in-place hopping trials (right), kv is increased 33% at t = 15 s, and we
can see that within around three strides, the hopping height increases to a new equi-
libirum value. Table 2 shows some statistics on these trials (the gathered data from
7 of the 12 trials was usable, with large communication drops in the remaining).
Qualitatively, the robot stably switched between two hopping heights in each run.

6 Conclusion

To sum up the contributions of this paper, we (a) motivate, propose, and demon-
strate a new, relaxed, notion of anchoring using our extension (Section 2) of classi-
cal averaging theory, (b) show that in a decoupled implementation (Table 1) of tail-
energized hopping in an idealized (assumptions 1-4) planar tailed monoped (15),
the stance vector field decomposes in an averaged sense (but not in an exact sense)
to a 1DOF vertical hopper and active rimless wheel (Prop. 2), and (c) give a proof
of stability (Prop. 3) for the tailed monoped (d) test numerically and through exper-
iments (Section 5) that the same feedback control rules stabilize planar hopping on
the Jerboa [12] with controllable height and forward speed.

Future work We next plan to develop a formal definition of average anchoring
(which we have skirted in this paper in favor of an illustration using the tailed
monoped example), as well as an investigation into its relation to the classical an-
choring notion [3].

The physical platform we have used, the Jerboa, has 12 unconstrained DOF’s [12],
but our tailed monoped model in this paper considers only 5 of them (2DOF body,
2DOF leg, 1DOF tail). In future work, we wish to explore the composition of more
templates with the ones in Section 3 (as suggested in [11]), in order to be able to
detach the robot from the boom.
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