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Abstract— We propose a new paradigm for reactive wall-
following by a planar robot taking the form of an actively
steered sensor model that augments the robot’s motion dy-
namics. We postulate a foveated sensor capable of delivering
third-order infinitesimal (range, tangent, and curvature) data
at a point along a wall (modeled as an unknown smooth plane
curve) specified by the angle of the ray from the robot’s body
that first intersects it. We develop feedback policies for the
coupled (point or unicycle) sensorimotor system that drive
the sensor’s foveal angle as a function of the instantaneous
infinitesimal data, in accord with the trade-off between a
desired standoff and progress-rate as the wall’s curvature varies
unpredictably in the manner of an unmodeled noise signal.
We prove that in any neighborhood within which the third-
order infinitesimal data accurately predicts the local ‘“shape”
of the wall, neither robot will ever hit it. We empirically
demonstrate with comparative physical studies that the new
active sensor management strategy yields superior average
tracking performance and avoids catastrophic collisions or wall
losses relative to the passive sensor variant.

I. INTRODUCTION

The ability to follow the boundary of obstacles in the
environment gives a robot the freedom to navigate in a
higher dimensional ambient space while keeping the motion
control problem at the dimensionality of the boundary itself.
There is an extensive literature on “bug’-style algorithms
with various sensory enhancements and optimizations which
provide guarantees on achieving specific navigation [1],
mapping or pursuit-evasion [2] goals with sparse sensory and
locomotory capabilities.

In this paper we focus on a kinematic planar robot
equipped with an actively steerable infinitesimal' sensor.
The motivation behind our sensor model is that it is closely
related to low-bandwidth sensors such as biological or bio-
inspired active antennae/whiskers which sense distance? [3],
[4], tangent [5], [6] or texture [7], as well as to foveating
high-bandwidth sensors such as a laser range scanner or
a vision system [8] with shape-from-shading [9] or other
attention-localizing [10] capabilities. The active steering
ability brings an additional degree of freedom to be con-
trolled. While the classical sensor management literature
[11], [12], [13], [14], [15] focuses on optimal (with respect
to estimation error or information theoretic considerations)
sensor placement, we seek a real-time control strategy for
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'We define “infinitesimal” as a narrow field-of-view sensor which can
measure range, tangent and curvature of a smooth curve at one point.

2Though, repeated distance measurements in a small neighborhood can
be used to approximate tangent, and likewise for curvature.

Fig. 1.
running platform whose horizontal plane dynamics is well approximated by
the unicycle model (9) at modest speeds [16]) equipped with a conventional
laser scanner idealized as an infinitesimal sensor, seen here tracking a wall
as part of our test suite (cf. Section IV-A).

Our experimental platform: a RHex variant (a hexapedal legged

the coupled sensorimotor system (which is assumed to have
first-order dynamics, and respecting which the coupling must
be specifically prescribed) for successful wall-following.

A. Brief Survey of Prior Literature

The past literature on wall-following robots is vast,
however we can immediately distinguish this work from
potential-field approaches [17], [18], which need a priori
knowledge about the environment, as well as from ap-
proaches based on mapping [19], [20], which require more
sophisticated sensors than assumed here and need relatively
high computational power and memory. We want to restrict
attention to the so-called “reactive” or “feedback”™ [21]
paradigm of robot control, where the task is specified as
a dynamical relation instead of a prescribed plan. Methods
of this genealogy present desirable traits such as faster
response time in the presence of disturbances and reduced
computational cost, thereby reducing the complexity of the
task while expressing a degree of robustness to unstructured
environments due to the minimality of its model.

Even among reactive wall-following methods, there is a
large literature [22], [23] on methods which successfully
prove internal stability with smooth controllers in restrictive
environments, with an added layer of discrete switching to
circumvent an enumerated set of environmental obstacles.
We argue that it is very difficult to make concrete conclusions
about the stability or performance of the resulting hybrid
system in the presence of unmodeled external perturbations.
Our approach instead assumes a very myopic sensor with a



correspondingly minimal environment model®; this simplic-
ity admits a proof of successful wall-following by the robot
in an unknown environment.

B. Organization and Contributions of the Paper

The central contributions of this paper are: (a) introduction
of a novel active sensing model to the established problem
domain resulting in an explicit sensor feedback control
law (6) that is empirically shown to dramatically improve
performance over a passive sensor implementation (robot
experiments are reported in Section IV-A), (b) novel task
specification relative to a continuum goal-set as a point-
set in a controlled moving frame (see Section II), and (c)
convergence and tracking guarantees in the (infinitesimal)
moving frame (presented as Propositions 1, 2 and 3 in
Section II) as well local* guarantees of wall avoidance in
Propositions 5 and 7 in Section III.

The intuition that a reactive wall-following robot in envi-
ronments with corners could benefit from a positive (nega-
tive) look-ahead at concave (convex) corners motivates the
need for a real-time active sensor. In some motivational prior
work with an infinitesimal passive sensor for rapid wall-
following [25], the authors proved internal stability of the
system and had a basin of attraction large enough to reject
small external perturbations (corners), but it was necessary
to resort to a switching control scheme to handle large
deviations from equilibrium. We posit that our proposed
active sensing strategy could be directly applied to eliminate
the need for any heuristic switching.

While our “local” analysis is still myopic, we are able
to provide conditions directly related to the robot state
and curvature-like perturbation terms which can provide
almost-global guarantees against failure, and which are not
considered in typical controller stability analyses [26], [27]
in the prior literature from the best of our reading.

Absent an explicit model of the environment we perform
the analysis in a moving local frame (a method introduced
by Justh et. al. [28]). Using this method, the task-induced
symmetry [29] presents itself as a nonzero “drift” term in
our dynamical system, so that our goal manifold in world
coordinates is just a point in the local frame—a fact that
simplifies the analysis greatly. Further, our proposed unicycle
controller of Section II-B demonstrates the advantages of a
smooth controller that is allowed to set the speed as well as
the turning rate. We hypothesize that a large body of existing
unicycle control literature that assumes that the system has
fixed forward speed [24], [26] could benefit from this insight.

II. INFINITESIMAL CONTROLLER

Model the wall as a simple smooth plane curve of bounded
curvature which has the explicit form b: R, — Y C R?. Let

3 Recent work with sonar [24] introduces a “richer” sensor (reporting a
2D area rather than our ray), but incurs more restrictive assumptions violated
by our target operating regime of cluttered corridors and hallways.

4We define local in Section III to be a small neighborhood of the robot’s
position where a second-order approximation of the wall is admissible. We
presume that in most non-adversarial settings, such a neighborhood will be
considerably larger than that bounded by the sensory horizon.

TABLE I
LIST OF IMPORTANT SYMBOLS

Name || First appears | Meaning
b Section II Explicit form of wall
B Proposition 4 | Implicit form of wall
R Section II Signed, normalized wall curvature
p Section II Robot rate of progress
p Section II Point robot position (world frame)
q Section II-A Point robot position (local frame)
E Section II-A Transformation to local frame
© Section II-A Sensor pointing angle
v (1) Sensor steering rate (input)

u II-A Point robot velocity (input)

(p,0) Section II-B Unicycle robot configuration (world frame)
r Section II-B Unicycle configuration (local frame)
ul Section II-B Unicycle forward speed (input)

U2 Section II-B Unicycle steering rate (input)

Db denote the map to the tangent vector and ~ the map to the
signed curvature at a point on the curve. We don’t require that
the curve be unit-speed parameterized, but define Db" as the
unit tangent, and k = Hg—b” the normalized curvature. Define
|| max as the maximum value attained by the |%| function.

We assume without loss of generality that the goal is to
traverse the curve along the direction Db while staying on
the same side as the normal JDb (where J = [(1) *01}), and
to attempt to maintain a rate of progress p := ||Db||d =~ 1.

Additionally, assume that if the robot postion is p € R2,
and b(o) is the sensed point on the curve (implicitly assumed
to be within any sensing range limit), then the infinitesimal
sensor measures ||p — b(c)||, Db(o) and & (o).

A. Point Robot

The unitary matrix E7 = (Db%, JDb") can be used to
change coordinates to and from the local tangent-normal
frame, ¢ = E(p—b(0)). Additionally, imagine that the point
robot has a preferred “direction” oriented along Db (even
though it has no motion constraints as the unicycle does),
and note that ¢ = Zq is the pointing angle of the sensor.
In more intuitively illuminating terms, ¢o is the wall stand-
off, and —q; is the look-ahead distance. See Figure 2 for an
illustration of the model.

Let both the robot and its sensor be kinematically driven,

p=E"q, ¢ =v, (1)

where we define u = (uj,uL) in the local frame for
convenience. Some trigonometry yields

— 2
p=uy+ %v. 2)

For convenience, we will substitute p for v in the system
equations (1). (As long as g2 > 0 does not cross 0—
a condition which is ensured in steady-state by the proof
of Proposition 1—we can do this freely.) We examine the
consequences of not having control of v (passive sensor) in
Proposition 1.

Using the Frenet-Serret formulae [30], E = —6kJE =
—pkJE, and using (2), we get the simple local kinematics

q=1u-+pn, 3)



World frame

Fig. 2. Our assumed model, with a cartoon depiction of an antenna as
the exemplar infinitesimal sensor attached to the (shaded rectangle) mobile
robot, and the environment (shaded region lower right).

where we define n := —e; — KJg, an unmodeled “noise”
vector which includes environmental disturbances through &,
and a constant drift because of the movement of the frame.

Define ¢ := g2 — (6* + gq%) as the curvature-corrected
tracking error, where our nominal standoff is J*.

Proposition 1 (Point robot convergence). With active sens-
ing, we can assure (a) p = 1 (desired rate of progress), (b)
G2 — 1, and (c) ¢q1 — 0, whereas with passive sensing we
can only guarantee (a) and (b).

Proof. Suppose we want to minimize the cost

1 k.
v(g) = 547 + 50 “)
We can simply set

u = —Dv(q) — pn (5)
U= ﬁpdesired - ﬂ” (6)

to get the closed loop behavior
(j - —DV((]% P = Pdesired (7)
which ensures 7 = Dvg = —||Dv||? < 0. In effect, we

are using our three control inputs, ), % ,v, to control our
three degrees of freedom ¢y, g2, p. Section III-A includes a
less myopic analysis of this controller.
Without active sensing, in (1) we lose the ability to control
p through v, in fact (2) reduces to ﬂ\l = p. This turns (3)
into
i=[a,]—&Jq,

showing that ¢; is uncontrollable. Large ¢; results in a
detriment to the safety guarantees we can provide under
this control by directly jeopardizing the pre-conditions of
our proof of local wall-avoidance in Proposition 5. O

B. Unicycle Robot

The point robot design (illustrative simulations in Fig. 3
and 4) extends quite naturally to the unicycle (our horizontal
plane model for a quasi-static RHex gait [16]). Define the
matrix-valued function B : SE(2) — R3*? as

cos 0 O]

B(z,y,0) = [5189 0 (8)

We can model the kinematic unicycle with inputs u; (for-
ward speed), uo (steering rate) and world frame coordinates

(p,0) € SE(2), as (p,0) = B(p, 0)u.

Passive

Active

Fig. 3. The trajectory of the simulated point robot, showing tracking failure
when the robot is asked to maintain constant rate of progress without active
sensing. We choose the curve b(o) = (a, %0’ sin U), because it contains
curvature spikes reminiscent of corners in the real world.
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Fig. 4. The evolution of g1 (in blue) and g2 (in purple) for the simulated
point robot. The dashed lines represent the reference values for each
coordinate from (4), g; = 0, and ¢5 = 6* + %q% With the exception
of g1 tracking in the passive case (cf. Proposition 1), each other coordinate
shows exponential tracking to the goal in the closed-loop system (7)—which
explains why the solid lines track the dashed lines so well.

Let r € SE(2) be the local frame representation, and w =
IIr be the projection onto the first two elements. We can
follow the same general steps of Section II-A to get the
moving-frame system dynamics

7= B(r)u+ pn, p=v, ©)

where n is the same as before, and ¢ is the angle of the
pointing direction of the sensor relative to the axis of the
unicycle, ie. ¢ = tan~!(—ETw) — 6. Similar trigonometry
to (2) reveals that

llwll

p = |:COS r3, Tws

[+ e, (10)
As before, we find it easier to treat (u, p) as our inputs, where
v is held hostage by the linear constraint equation (10).

Assume that we would like to minimize the cost function
n:SE(2) = Ry,

1 k
n:ka(l—cosa)—&—ir%—i—ff%, (11)

2

where 7y = ry—(6*—57%), 15 = tan™ ' (—kfs), o = r5—r3.

The latter two summands are exactly the same as the in (4),
and the first term serves the intuitive purpose of steering the
unicycle in the direction counter to the offset error, 75.
Define B(p,0)* = (—sinrs,cosrs,0), and note that the
non-holonomic motion constraint intuitively results in the
system doing a poor job of following the gradient field in
the B* direction. The effect is more explicit if we change
coordinates using the completion of the columns of B. Let



P:= [B,BX}, Dy = P[f]; then A = (n” B* is the hard-
to-cancel component of the gradient in the B* direction.

Let ¢+ > 0 be a constant design parameter used to stipulate
a “tube” around the B*-axis, T, = {r : ||z[|* < u, A >
0}, and let B, = {r € T, : ¢ # 0}. Geometrically, B,
comprises the configurations such that —Dn points almost
perpendicular to the unicycle’s forward axis.

We choose the controller

u = BT (=Dn(r) — pn), (12)

p=1—Lran ! (2), (13)
where n = —e; — kKJw. This results in the closed loop
dynamics

i = —Bz + p(n” BX)B*, (14)

0= —lz]* + p. (15)

The unicycle does not offer sufficient control authority to
simply “cancel out” the noise to get asymptotic stability in
the presence of disturbances as was done for the point robot.
however, we make the following claims:

Lemma 2. Outside the tube T,, we are guaranteed to be
reducing the cost: 7'7|T¢7 <0.
I

Proof. Notice in (15) that even though 7 is contaminated by
a noise term, we can control its magnitude with p. We assume
that the safety / stability criteria in 7) are more important than
constant rate of progress (p = 1), and so we use the definition
(13), which has the property that p ~ 1 when A < 0 and
0§p§§when)\>0.5Sov'7|r¢%<—u+u=0. 0O

The only problem we have to guard against is getting
stuck in B,,. To that end, we present below a “conservative”
analysis that guarantees this. In simulation or experiment, we
use more aggressive parameter values, but do not empirically
observe any attractors in B,,.

Proposition 3 (Conservative unicycle robot convergence). If
w =~ 0, the system is driven to n = 0.

Proof. With this assumption, p > 0 but z ~ 0 in terms of
contribution to (14), leading to the simplification o = 0.
The system dynamics restricted to B, is

= EBX

ry% z (16)

where we are allowed to divide by ( because of the definition
of B,. Still restricting everything to B, some tedious multi-
variable calculus shows that D(BTDn)- B* = (x, ky?) # 0.
Using this, we get

. . PA

Z"BN, = Dz|3u ' r‘{Bu - ? (D(BTDn) . BX ’(BN') 7& 0’
which means that we are forced to exit B,,. We can conclude

that the system is driven to n = 0, via a trajectory that enters
T, with ¢ = 0. O

STt is tempting to set y = ||z||2 which would ensure 7 < 0. However, the
non-empty kernel of BT implies that we can have z = 0 while ||Dn| =
[¢] # 0 (i.e. we are not on the goal set). Further, the restriction of (14) to
z = 0yields p =0, 7 = 0, i.e. the robot would get “stuck”.

III. LoCAL WALL-AVOIDANCE GUARANTEES

We claim that our proposed controllers guard against wall
penetration in a region (hereforth called a “local” neigh-
borhood) of much larger size than the robot’s infinitesimal
field of perception. We invoke a global implicit function
representation of the curve (unknown to the robot) and use
it to prove that the controllers of Section II prevent us
penetrating the wall under explicit conditions.

Proposition 4 (Wall implicit function). There exists a real-
valued function 3 globally defined in a neighborhood of the
curve such that
1) Bob = 0, it is positive on the side containing the
outward normal and negative on the other side,
2) Dﬁ‘p = n(p), where p € Y and n(p) is the unit
outward normal to Y at p, and
3) E D2B|p ET = [7’%0(”) 8}, where E is the change of
basis to local coordinates at p (as in Section II-A).

Proof. Let T, (Y) be the normal bundle of Y, and N.(Y) be
an e-neighborhood of Y where the Tubular Neighborhood
Theorem [31] holds. We conclude that there is a map
T, (Y) — N.(Y) that sends (p,e'n(p)) — (p + &'n(p)) for
all |¢’| < e and ¢ small enough.

Further, since we are on the plane and normals are
oriented, we assert that there is a diffeomorphism between
(p,An(p)) € TL(Y) and (p,A\) € Y x (—¢,€), letting us
identify (p, A) < (p, An(p)).

Composing this last map with the one from the Tubu-
lar Neighborhood Theorem, we get the diffeomorphism
f(p,A\) = (p+ An(p)). Let us define

-1
6 =T20 f )
where 75 is the projection to the second element. Now we

prove each of the subparts of the Proposition:

1) Observe that f(p,A\) for A > 0 lies in the same
direction as the outward normal.

2) Taking a time derivative of the equation S ob = 0
shows that Dﬂ|b(g) -Db(o) =0, so DB’p is parallel to
n(p). To check that it is of unit magnitude,

) = lim Blp+ An()}j)) — B(p)

a7)

=1

3) Note that the hessian is symmetric, and we can find
the (1,1) and (1,2) elements by taking derivatives of
DS - Db* = 0 and DS - (JDb*) = 1. For the (2,2)
element, we will do a Taylor expansion of £,

A=B{p+Am)
= B(p) + )\Dﬁ|pm + /\;mTD25|pm + o(t?)

t2 mTDZB} m
2

12 ’

= 0= lim
t—0

and we can conclude that in the direction normal to
the curve, mTD2ﬂ|pm =0. O

Assume the robot is looking at a point b(c) € Y. We will
use a first-order Taylor expansion of DS for the analysis, and



Fig. 5. Implementation of the infinitesimal sensor with a laser scanner:
this view from the robot’s perspective (moving in the “up” direction) shows
the (sub)set of points used to calculate curvature (green disk overlay) as
well as the estimated curvature (LS-fitted gray parabola). For this example,
es = 0.3.

so we need ||[p — b(o)|| to be small. Based on the properties
of the curve, fix &, such that YN N, (b(c)) is approximated
well by the Taylor expansion.

A. Point Robot

Proposition 5 (Point robot local safety condition). If 2kdé* >
€r, then under the flow (7), we have

ﬂ|BmNET.(b(U)) >0,

i.e. the robot gets repelled from the wall into the safe region.

Proof. The Taylor expansion at p € Y N N, _(b(0)) is
. . T 2 T
5|p = D5|p prqE (Dmb(o) +D ’8|b(o)E q)
= (o= [53)0) = 50
Define y := [ ;% |. Note that Dv = gye1 + kGoy. Using
(5), (4), and the fact that ¢ = 5¢f on S1(0),
B, = k&*|lyll* + Rai. (18)

Using the fact that max, >0 175 = i,

lq1] - 1+;$1|12 < @

|-
1+k2q?
Going back to (18), we get

81, = yl* (k" = 121) > 0,

by the given condition as long as we are in N, _(b(c)). The
condition of being in the ¢,-ball is automatically enforced
by the asymptotic stability guarantee of (5).

This result together with the claims in Proposition 1 shows
that the active sensing capability is crucial in giving safety
and performance guarantees. O

B. Unicycle Robot

Unlike the point robot, it is necessary for the unicycle
to allow a buffer region or “collar,” € = Y x (0,&,], of
width 0 < g, < 0" in which the controller has time to act.
Define 9C := Im{b + €,,(n o b)}, the curve which is the
ew-extrusion of the wall. We show that if the robot starts
from an arbitrary configuration on 0C, then the control (12)
prevents a collision.

If the local frame coordinates of the robot are 7, €
SE(2) N (N, (0) x S1), define y := [ 5™ ] and x := M-
The following Lemma establishes some technical results
necessary for our proof of wall-avoidance in Proposition 7.

Lemma 6. On the boundary of the collar, 9C, the closed
loop system ( ]4) exhibits
D Blye=—(1+x)
2) <0 = 5>2k6*

and

? (ko = A lmax)-

Proof. On 9C, ry = '"1 +€4. Assume that k is large enough
that k0™ > &,,. We et the simplifications (a) —Dn = kd*y,
and (b) n = Jy + = 7161 Jy + x|ly|le1, where .
1) Just like the particle computation above,
B =yl > |lyl* (k6" (exy™)* — p — px)-
The lower bound to this (in the Lemma statement) is
attained when el'y* =0 and p = 1.
2) If B < 0, then |eZy*| is small; let eZy* = ¢ where
k6*€? > 14 . Additionally, without loss of generality
choose the sign (y*)7Je, = 1. Then

B = |lyllP(k6*€* + p& + pxeles).  (19)

Let R, = e*/ € SO(2), and then e, = RLe,. Taking
a derivative, and noting that the closed-loop system
(14) sets & = ko sina leads to é, = kg sin(a)Je,,

and & = (k, sin(a) — p&). Note that
sina = egRael = egel =~ eZJTJel
=(y “)TJel = [1 Rwl}el =1,
which means 62 ey ~ 0. Lastly,

Il = 2llylly™ 5" = 2llylly” (—pr(y*)TJ) = 0.

Using these in (19), we get

B = |lyl|*(2k6*¢ + p)&
> 2k5*||y||2(ka - |R|maX)- O

In the following Proposition, we use an infinitesimal
condition, w € N _(0)—which is under the jurisdiction
of the infinitesimal controller’s tracking prowess—to give
a local guarantee of success.

Proposition 7 (Unicycle robot local safety condition). If the
robot with local coordinates r such that w(0) € N._(0)NIC
uses a controller where the controller gains are such that

(1 + 2|R‘max5r) (1 + ‘H|max r)

ka > K max ’
2 [Rlmax + ewkd*

(20)

then

1) the maximal “incursion time” that the robot can spend

inside C approaching the wall (with ﬁ <0)is
t; <

1+x
250" (ko —| R max) ’ and

2) the robot does not reach the wall in this incursion
period, i.e. ming<;, B(t) = B(t;) > 0.

Proof. Assuming we start at time ¢ = 0 at a distance &,
from the wall, the latest time ¢; by which §(t) crosses 0 is

given by
/ 8

(2/<?5*Hy||

= |Rlmax)) = (14 20)llyll*,
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Fig. 6. Ground truth data comparing active and passive sensing strategies
in the test environment of Fig. 1. For the passive sensor implementation,
we tried a sweep of fixed ¢ values (bottom right plot). The red trajectories
correspond to a ¢ = —45° (forward-looking) configuration, which is adept
at concave corners, but fails at the convex one because it turns into the wall
too soon. (Recall that our system is memoryless; intuitively the robot must
apply a control action as soon as it senses the convex corner, even though it
has not approached it yet because of the larger “look-ahead”.) The magenta
trajectories correspond to a ¢ = —80° (right-looking) configuration which
would be capable of navigating the convex corner, but senses the concave
corner too late to be able to avoid the next wall segment. The active sensor
sweeps a gamut of angles (bottom left), automatically creating for itself a
larger (smaller) look-ahead at the concave (convex) corner.

and the first claim follows. The N, _(0) bound provides x <
2|R|maxer and [ly|| < 1+ |&|%,.e2. Using our lower bound
on f3, we can check that to ensure 5(¢;) > 0, we need
ti .
Blti) =cw+ | B2ew—(1+xX)ylt,
0

a sufficient condition for which is exactly (20). O

As a consequence of this Proposition, we can be assured
that even if the robot approaches the wall at an arbitrarily
bad configuration, the control action manages to steer it away
from the wall and avoid failure within the ¢,, collar.

IV. ROBOT EXPERIMENTS

We use the XRL platform [16] with a Hokuyo UBG-
04LX-F01 laser scanner mounted rigidly, such that we scan
on the horizontal plane in a 240° arc in front of the robot.

We instantiate our modeled infinitesimal sensor from the
laser scanner as in Fig. 5, and choose appropriate controller
parameters® for all of the following experiments.

A. Comparing Active to Passive Sensing

We set up a test course with the basic building blocks
of typical indoor environments, right-angle corners (robot
moves from right to left in Fig. 1). We present the tracking
performance with ground truth [32] data in Fig. 6.

6 We use a range of 0.2 - 0.5 meters standoff and our parameter values are
chosen aggressively (e.g. 4 = 0.1, or €5 chosen opportunistically to match
the “bumpiness” of the wall) relative to the conservative “guaranteed” values
in Propositions 3 and 7, albeit with no adverse empirical consequences.
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Fig. 7. Application of our controller to an indoor hallway with corners
and obstacles. The tracking error displayed is from the robot’s perception.

The experiments validate our general intuition that for a
reactive behavior, a constant-p strategy is easily defeated on
at least some kind of corner or feature in the environment.

B. Application to Complex Real-world Environments

Even though our model world assumes bounded curvature,
the perturbation rejection characteristics of our controller
enables us to get good performance in unmodeled and
relatively unstructured environments. Because of the lack of
a portable ground-truth mechanism, the trajectories in figures
in this subsection were generated by manual scan-matching,
and are thus suggestive but not exact.

Fig. 7 shows the robot tracking the wall in an indoor
hallway with sharp corners and clutter successfully. Note that
the measured & is what primarily affects tracking error.

Fig. 8 gives anecdotal evidence of some settings where the
controller-sensor combination fails, as detailed in the caption.

V. CONCLUSIONS AND FUTURE WORK

We have developed a real-time method for feedback
control of a coupled sensorimotor system for two planar
kinematic systems. We have supplied some analytical guar-
antees of controller stability and convergence (Section II),
and guarantees against failure (Propositions 5 and 7) as long
as the robot stays near the sensed point (Section III).

We have implemented this controller on a RHex robot,
and demonstrated (a) that it performs qualitatively better
than an equivalent passive-sensor system (Section IV-A),
and (b) good tracking capability in unmodeled real-world
settings (Section IV-B). We envision that the wall-following
capability can augment more complex behaviors, such as
landing behavior in autonomous stair-climbing [33].

In this paper we restricted ourselves to a first-order model
for robot and sensor, and a future extension to second-
order systems seems natural. For the progress-rate goal, this
would enable the construction of a point attractor around the
reference speed, versus its present manifestation as a linear
constraint on the input space in equations (6) and (10).

The speed of the robot in our experiments was limited by
invalidity of the unicycle model assumptions at high speeds,
resulting in failure to execute the desired control (12). In



B

o T T T T ) 0
g4 A 152 -4
£ 0 2.2 _g
= —4+ 4 =~ &
&) . . . . 1 g 135

0 2 4 6 8 10 0 2 4 6 8 10

Time (seconds) Time (seconds)

Fig. 8. Examples of environments which could cause failure: A) a wall

with a grating (on the top edge), and B) a small nook in a corridor, the
total dimensions of which are comparable to one body length of the robot.
The bottom row shows the data corresponding to the likely failure modes
in each case: highly noisy (incurred by the high spatial frequence of the
grating) raw (cyan) and filtered (blue, Kalman filter output with €5 = 0.2)
curvature signals on the left for A, and ¢ with decreasing |¢| on the right
for B. The problem in A can be attenuated by (a) choosing a larger €5,
or (b) filtering the raw data. In B, the slow traversal speed necessitated by
the tight environment precludes sufficiently rapid recovery from the initial
convex corner, a consequence of our naively slaving ¢ to the robot motion
(likely ameliorated, e.g., by a second-order sensor model).

the future we would like to adapt an LLS model [34] for
our robot, which could be better suited to control of an even
faster wall-following behavior.
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