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Abstract: In this project, a simple method 
for efficient and real-time planning for a 
mobile robot with differently shaped upper 
and lower bodies is presented. The approach 
is based on planning paths, taking into 
account possible collisions of both the upper 
and lower parts of the robot. To generate 
fast plans, the 3D space is projected onto a 
set of 2D planes and these are used for 
planning and collision detection. Simulation 
results with the PR2 robot in a ROS setup 
and different environments are compared 
with those from current implementations. 

 

I. INTRODUCTION 

Autonomous mobile robots are nowadays 
being fitted with manipulators to enable them 
to perform a wide variety of actions such as 
grasping and moving objects from one place to 
another. Such robots usually have a polygonal 
or a circular shaped base and a very different 
upper body with the arm. In these cases, 
planning for the whole robot becomes tougher. 
To make the planning problem easier, in most 
generic cases, the arms are assumed to be 
tucked into the robot and then planning is done 
just for the base by projecting the space onto a 
2D plane. This approach will not always be 
feasible. There may be many actions that may 
not allow tucking the arms back into the robot. 
In such cases, the existing implementations 
would fail to detect the collisions of the arm. 
One way to go around this is to project the 
arms onto the ground plane as well and plan for 
the new footprint including the arms. 

 
 
But this may not return any solutions as we are 
projecting obstacles that may not necessarily be 
in collision with the arms. So, we need to plan 
and check for collisions taking into account 
that the arms are at a certain height from the 
ground level. 
 

The collision detection step has to be done for 
every single point along the plan and so, 
checking to see if every point is an obstacle, in 
3D space would be very expensive and time-
consuming. So, the dimensionality should also 
be reduced in some manner for the sake of 
efficiency. 

The proposed method addresses both these 
issues. In addition to planning for the base, the 
arms are also projected onto separate planes 
and the footprints of the arms are checked for 
collisions against the projected obstacles. The 
main difference is that for the arms, only 
obstacles that are within its z-extents are 
considered when checking for collisions. 
Simulations were run in a ROS setup and 
different environments with the PR2 robot 
using an ARA* planner. The results show a 
marked improvement in detecting collisions 
compared to existing implementations. 

 

II. RELATED WORK 

The planning problem is usually formulated as 
a graph search. Graphs can be constructed in 
many ways as a Grid-based or a Lattice-based 
or as a Voronoi diagram, as a PRM etc. The 
states in a graph can just be representative of 
positions in the world or positions and 
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orientations or may be in the C-Space of a 
manipulator etc.  

There are a number of established methods for 
searching these graphs, like Djikstra, A*, 
ARA*, D* Lite etc. Most of these give specific 
and proven bounds on the optimality of the 
path they return. They are also made to be very 
efficient and fast and usually are able to plan in 
real time.  

The main bottleneck in the planning problem is 
checking for collisions. The speed of the 
planner depends on the speed of the collision 
checking part. A lot of research in collision 
detection has been related to its application in 
games for detecting collisions and planning 
suitable responses for animated characters. A 
number of techniques have been developed for 
fast detection in 2D as well as 3D such as the 
simple sweep and prune, finding the Separating 
Axis and checking for intersections using it etc. 
[4]. There are also a number of methods where 
a bounding box is fitted to the objects in 
question and broad phase collision detection is 
done to check if there is a chance for any 
collision between the objects. If the possibility 
of collision is high, the bounding boxes are 
then subdivided into smaller parts and each of 
them is checked for collisions and so on. [5] 
gives a good overview of current techniques 
for collision detection used in Computer 
Graphics. 

These techniques have been translated to 
collision detection for robot manipulators. 
Usually, the checking is done in 3D using 
Bounding Boxes for the links, which turns out 
to be very expensive.  

 

III. PROPOSED APPROACH 

In a general sense, the proposed approach 
could be applied to any robot which does not 
have a uniform shape throughout its height. 
Initially, the robot is split into a number of 
distinct planes and all the obstacles within two 
planes are projected down onto the lower of the 

two planes. The 2D projection of the portion of 
the robot contained within the two planes, 
called the footprint of the robot, can then be 
used for checking collisions of the robot with 
any obstacles in that plane. The planning is 
done only on the lowermost plane with the 
whole robot and all the obstacles being 
projected onto that single plane. But, for every 
point along the plan, all the footprints are 
checked with the obstacles in their respective 
planes to detect collisions. A tolerance can be 
set which would determine the number of 
planes that the robot needs to be subdivided 
into. This can be set to different values based 
on the accuracy that is needed. A greater 
number of planes would take the approach 
closer to that of full blown 3D collision 
detection but would also take more time to 
process. On the other hand, a balance can be 
found between accuracy and speed which 
would dictate this tolerance.  

 

      IV. BACKGROUND  

ROS has been chosen as the framework to 
work on due to its inbuilt features to generate 
maps from sensor data and the ease with which 
the solutions can be verified using tools like 
Gazebo and Rviz. 

ROS has an existing global planner which 
makes use of the Djikstra’s Algorithm and A* 
for planning. Also, a class of planning 
algorithms called the Search Based Planning 
Library (SBPL) are also implemented in ROS. 
All these planners used ROS’s inbuilt Costmap 
generating package to get data about the 
environment. Also, none of the existing 
implementations include any collision checking 
for the arms. The planning and collision 
checking are done with respect to the base 
footprint and so the manipulators would 
usually hit the walls when the robot went too 
close to them. So, the focus was to implement 
the new method in ROS to prove the 
superiority of the new approach in comparison 
to the current existing implementation. 
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Due to the availability of data and models of 
the PR2 robot in ROS, we decided to 
implement the proposed system on the PR2 
robot model in ROS. Fig 1 shows a model of 
the PR2 robot. 

A few general assumptions were made related 
to the problem which included assuming 
perfect sensing, a static environment and no 
movement of the arms when the base of the 
robot was in motion. An ARA* planner is used 
for generating the plans and the search space is 
subdivided into a 3D (x,y,θ) lattice. 

 

Fig 1. The PR2 robot, courtesy Willow Garage 

 

 V. IMPLEMENTATION IN ROS 

The sections below deal with implementation 
of this proposed system on the PR2 robot in a 
simulated environment using ROS. Only two 
extra planes are considered, one for each of the 
arms.  

The overall system can be thought of to be 
comprised of three separate parts, each of 
which will be explained in the sections below. 

Footprint of the arms: 

The PR2 has two 7-DOF robot arms. There are 
three main links which are about 0.4, 0.32 and 
0.2 m in length. The links are assumed to be 
cylindrical. The procedure to obtain the 
footprint of the arm is simple. Initially, the 
joint angles are obtained from the ROS 

parameter server. Details about the joints, links 
and their limits can be used to create a simple 
model of the robot arm. These are available as 
pre-existing ROS files. Using these files and 
the current joint-angles, we compute the 
position of each joint in 3D space using 
Forward Kinematics.  

Simply neglecting the “z” coordinates of these 
points will give us the projections of the joint 
centres on the x-y plane. These projections will 
be points along lines drawn through the centre 
of each of the links. We then find the 
perpendiculars to these lines to find the 
projections of the cylinders (links assumed to 
be cylinders). This gives us the footprint of the 
arm. This procedure can be repeated for the 
other arm as well. Figures 2 & 3 shows the 
footprints of the arms for two simple cases. 

 

Fig 2 -- Footprints of the arm (in black) 
without considering the gripper (base footprint 
set manually – in red) 

Fig 3 -- Footprints considering the gripper  
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Fig 4: (From left to right – Blue represents inflated obstacles) a) PR2 robot in an environment with a table and a stick 
in between the arms, b) Costmap generated for the base, c) Costmap for the arms d) Costmap generated with sensor 
info from “Z” values of 0 to 0.4 m. 

Costmaps for the arms: 

The PR2 has a number of sensors namely a 
tilt laser scanner above the shoulders, two 
stereo cameras in its head and another laser 
scanner in its base. All the sensors output a 
point cloud which is the input to the 
Costmap. The Costmap projects all these 
points onto the XY plane and for every point, 
a cost is assigned based on the distance to the 
nearest obstacle. So, the costmaps we get are 
a 2D projection of the 3D world. Also, the 
obstacles are inflated by the inscribed radius 
of the robot. This helps in fast collision 
checking.  

After we find the joint positions using 
Forward Kinematics, we compute the “Z” 
extents of the robot arm. The “Z” extents are 
the maximum and minimum Z values of the 
arms. The focus now is to get a map which 
projects obstacles only within this specified 
“Z” range. We accomplish this by filtering 
the sensor data that the costmap gets so that 
no data outside the necessary “Z” range is 
given to the costmap. We do this by changing 
a few parameters that are specific to the 
sensor data in the costmap. This map is now 
used for collision checking of the arm. Figure 
4 shows a few costmaps that are obtained for 
different “Z” ranges from a specific 
environment using the procedure described 
above. 
 

Collision checking and planning: 

Using these new costmaps and footprints, we 
check for collisions of the arms as well as for 
the base in the planner. The current system 
(the ARA* planner in the (x,y,θ) lattice 
environment) checks for collisions of the 
base alone when planning. The planner is 
mainly based on the one described in [1]. It 
also uses a number of optimization methods 
described in [1] to speed up the planning 
process. 

At the very first initialization step, the 
planner pre-computes all its actions using the 
possible motion primitives of the robot. It 
also pre-computes the footprint cells for all 
the actions. This enables it to plan very 
quickly and in real time.  

In the proposed method, the planner still 
plans just for the base. But for every point in 
the planned path, the planner evaluates the 
footprints of the arms and checks to see if 
they collide with any obstacles. The new 
planner also pre-computes the necessary 
actions and footprints right at the start to 
improve the speed and performance.  

The collision checking is done in two phases. 
There is a simple broad phase collision 
detection which initially checks to see if there 
are any obstacles within the inscribed radius 
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of the robot/footprint. If it detects any such 
cell, it definitely knows that the robot is in 
collision. It no such collision is detected, it 
checks to see if there are any obstacle cells 
within the circumscribed radius of the 
robot/footprint. If there are any cells detected 
here, it goes to the narrow phase collision 
detection which iterates through the cells in 
the footprint to look for collisions. This 
design helps the system to check for 
collisions in an efficient manner. 

 

VI. EXPERIMENTAL RESULTS 

We have implemented our system on a ROS 
setup using the PR2 robot model available in 
ROS. A number of simulations were run and 
ROS’s visualization tools Gazebo and Rviz 
were used to check the feasibility of the 
obtained solution. The planner was tested out 
on two different environments, a simple maze 
like world with walls and no external 
obstacles and another world shown in Fig 3 
(leftmost image). The results were compared 
with those obtained using the existing 
implementations. The results can be 
summarized as to belong to one of the 
following cases: 
 

1) If both the arm and the base would 
not collide, both the planners returned 
the same solution. (except for a few 
special cases tested) 
 

2) In the cases where the arm would 
collide but the base would not collide 
with any of the obstacles, the 
proposed planner indicated that there 
was no solution possible while the 
existing planner returned a solution 
which would cause the arms to collide 
with the obstacles. 

 
3) In cases where both the arm and the 

base would collide, both planners 
indicated that no solution was 
possible. 

As indicated above, a few special cases were 
tried out where initially both the base and the 
arms were not in collision but a simple 
motion would cause the arms to collide with 
obstacles. A simple case tried out was to take 
the start pose of the robot to be the one in 
Figure 3. The goal for that case was set such 
that the robot would end up facing the 
opposite direction about a meter behind its 
initial position. For that specific case, the 
existing planner returned a solution which 
asked the robot to spin in place and then 
move towards the goal. This ends up causing 
the arms to hit the stick in between them.  

On the other hand, when the new planner is 
given the same case, it commanded the robot 
to go in reverse at first and then turn at a 
point where the arms are out of collision of 
the stick. This case proves the marked 
improvement of the proposed approach in 
comparison to the existing planner. 

Table 1 shows the planning time for the 
proposed planner with respect to the size of 
the path. This shows that the new system is 
capable of planning paths in real time. 

Path size (no of points ) 

( 1 point ~ 50 cm) 

Proposed planner 

 plan time (sec) 

                17 0.05 

                20 0.06 

                28            0.30 

Table 1: Planning time for paths of different 
sizes. 

Fig 5 shows another case used for testing the 
planner. The final goal position set is invalid 
due to collision of the arm. The existing 
planner returns a path which results in 
collision while the proposed planner doesn’t 
return a path. 

                    VII. CONCLUSIONS 

We have presented a general approach for 
planning paths for robots with complex 
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Fig 5 - (Going Clockwise from top) a) Initial pose of the robot b) Collision of arm with the table in 
case of the existing planner. c) Existing Planner shows that there is a path(in green) while there isn’t 
one d) New planner doesn’t allow the goal state to be set e) New planner shows no path 

shaped bodies. Our approach uses simple 
projection of the 3D world onto the 2D space 
to generate safe collision free paths in real 
time. We also presented a method for 
generating the maps and footprints which are 
integral in our approach. A simple 
implementation of the proposed approach 
was implemented in ROS and a number of 
simulations were run and verified using the 
PR2 robot. The efficiency and speed of the 
proposed planner were compared with the 
existing method and found to be almost the 
same. The proposed method was also found 
to give better and collision free paths in most 
of the cases. 

In the future, it is important to look at various 
ways to improve on the results obtained and 
to develop the proposed approach for more 
complicated cases. The implementation can 
be extended to check for collisions in 
multiple planes to achieve a better accuracy 
in detecting and avoiding collisions. The 
approach can also be extended to include 
motion of the arm as well. A challenge in this 
would be to be able to generate costmaps 
very quickly. Another problem would be that 
just projecting the obstacles from the top 

might not be enough in some cases. The 
approach can be improved to incorporate 
methods such as a finding the separating 
plane between the two objects and projecting 
them onto that specific plane to check for 
intersection.  
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