
1

Planning paths for a mobile robot with different
upper and lower footprints

Arunkumar Byravan Maxim Likhachev
 Masters in Mechanical Engineering School of Computer Science

 University of Pennsylvania University of Pennsylvania
Philadelphia, PA Philadelphia, PA

Abstract: In this project, a simple method
for efficient and real-time planning for a
mobile robot with differently shaped upper
and lower bodies is presented. The approach
is based on planning paths, taking into
account possible collisions of both the upper
and lower parts of the robot. To generate
fast plans, the 3D space is projected onto a
set of 2D planes and these are used for
planning and collision detection. Simulation
results with the PR2 robot in a ROS setup
and different environments are compared
with those from current implementations.

I. INTRODUCTION

Autonomous mobile robots are nowadays
being fitted with manipulators to enable them
to perform a wide variety of actions such as
grasping and moving objects from one place to
another. Such robots usually have a polygonal
or a circular shaped base and a very different
upper body with the arm. In these cases,
planning for the whole robot becomes tougher.
To make the planning problem easier, in most
generic cases, the arms are assumed to be
tucked into the robot and then planning is done
just for the base by projecting the space onto a
2D plane. This approach will not always be
feasible. There may be many actions that may
not allow tucking the arms back into the robot.
In such cases, the existing implementations
would fail to detect the collisions of the arm.
One way to go around this is to project the
arms onto the ground plane as well and plan for
the new footprint including the arms.

But this may not return any solutions as we are
projecting obstacles that may not necessarily be
in collision with the arms. So, we need to plan
and check for collisions taking into account
that the arms are at a certain height from the
ground level.

The collision detection step has to be done for
every single point along the plan and so,
checking to see if every point is an obstacle, in
3D space would be very expensive and time-
consuming. So, the dimensionality should also
be reduced in some manner for the sake of
efficiency.

The proposed method addresses both these
issues. In addition to planning for the base, the
arms are also projected onto separate planes
and the footprints of the arms are checked for
collisions against the projected obstacles. The
main difference is that for the arms, only
obstacles that are within its z-extents are
considered when checking for collisions.
Simulations were run in a ROS setup and
different environments with the PR2 robot
using an ARA* planner. The results show a
marked improvement in detecting collisions
compared to existing implementations.

II. RELATED WORK

The planning problem is usually formulated as
a graph search. Graphs can be constructed in
many ways as a Grid-based or a Lattice-based
or as a Voronoi diagram, as a PRM etc. The
states in a graph can just be representative of
positions in the world or positions and

2

orientations or may be in the C-Space of a
manipulator etc.

There are a number of established methods for
searching these graphs, like Djikstra, A*,
ARA*, D* Lite etc. Most of these give specific
and proven bounds on the optimality of the
path they return. They are also made to be very
efficient and fast and usually are able to plan in
real time.

The main bottleneck in the planning problem is
checking for collisions. The speed of the
planner depends on the speed of the collision
checking part. A lot of research in collision
detection has been related to its application in
games for detecting collisions and planning
suitable responses for animated characters. A
number of techniques have been developed for
fast detection in 2D as well as 3D such as the
simple sweep and prune, finding the Separating
Axis and checking for intersections using it etc.
[4]. There are also a number of methods where
a bounding box is fitted to the objects in
question and broad phase collision detection is
done to check if there is a chance for any
collision between the objects. If the possibility
of collision is high, the bounding boxes are
then subdivided into smaller parts and each of
them is checked for collisions and so on. [5]
gives a good overview of current techniques
for collision detection used in Computer
Graphics.

These techniques have been translated to
collision detection for robot manipulators.
Usually, the checking is done in 3D using
Bounding Boxes for the links, which turns out
to be very expensive.

III. PROPOSED APPROACH

In a general sense, the proposed approach
could be applied to any robot which does not
have a uniform shape throughout its height.
Initially, the robot is split into a number of
distinct planes and all the obstacles within two
planes are projected down onto the lower of the

two planes. The 2D projection of the portion of
the robot contained within the two planes,
called the footprint of the robot, can then be
used for checking collisions of the robot with
any obstacles in that plane. The planning is
done only on the lowermost plane with the
whole robot and all the obstacles being
projected onto that single plane. But, for every
point along the plan, all the footprints are
checked with the obstacles in their respective
planes to detect collisions. A tolerance can be
set which would determine the number of
planes that the robot needs to be subdivided
into. This can be set to different values based
on the accuracy that is needed. A greater
number of planes would take the approach
closer to that of full blown 3D collision
detection but would also take more time to
process. On the other hand, a balance can be
found between accuracy and speed which
would dictate this tolerance.

 IV. BACKGROUND

ROS has been chosen as the framework to
work on due to its inbuilt features to generate
maps from sensor data and the ease with which
the solutions can be verified using tools like
Gazebo and Rviz.

ROS has an existing global planner which
makes use of the Djikstra’s Algorithm and A*
for planning. Also, a class of planning
algorithms called the Search Based Planning
Library (SBPL) are also implemented in ROS.
All these planners used ROS’s inbuilt Costmap
generating package to get data about the
environment. Also, none of the existing
implementations include any collision checking
for the arms. The planning and collision
checking are done with respect to the base
footprint and so the manipulators would
usually hit the walls when the robot went too
close to them. So, the focus was to implement
the new method in ROS to prove the
superiority of the new approach in comparison
to the current existing implementation.

3

Due to the availability of data and models of
the PR2 robot in ROS, we decided to
implement the proposed system on the PR2
robot model in ROS. Fig 1 shows a model of
the PR2 robot.

A few general assumptions were made related
to the problem which included assuming
perfect sensing, a static environment and no
movement of the arms when the base of the
robot was in motion. An ARA* planner is used
for generating the plans and the search space is
subdivided into a 3D (x,y,θ) lattice.

Fig 1. The PR2 robot, courtesy Willow Garage

 V. IMPLEMENTATION IN ROS

The sections below deal with implementation
of this proposed system on the PR2 robot in a
simulated environment using ROS. Only two
extra planes are considered, one for each of the
arms.

The overall system can be thought of to be
comprised of three separate parts, each of
which will be explained in the sections below.

Footprint of the arms:

The PR2 has two 7-DOF robot arms. There are
three main links which are about 0.4, 0.32 and
0.2 m in length. The links are assumed to be
cylindrical. The procedure to obtain the
footprint of the arm is simple. Initially, the
joint angles are obtained from the ROS

parameter server. Details about the joints, links
and their limits can be used to create a simple
model of the robot arm. These are available as
pre-existing ROS files. Using these files and
the current joint-angles, we compute the
position of each joint in 3D space using
Forward Kinematics.

Simply neglecting the “z” coordinates of these
points will give us the projections of the joint
centres on the x-y plane. These projections will
be points along lines drawn through the centre
of each of the links. We then find the
perpendiculars to these lines to find the
projections of the cylinders (links assumed to
be cylinders). This gives us the footprint of the
arm. This procedure can be repeated for the
other arm as well. Figures 2 & 3 shows the
footprints of the arms for two simple cases.

Fig 2 -- Footprints of the arm (in black)
without considering the gripper (base footprint
set manually – in red)

Fig 3 -- Footprints considering the gripper

4

Fig 4: (From left to right – Blue represents inflated obstacles) a) PR2 robot in an environment with a table and a stick
in between the arms, b) Costmap generated for the base, c) Costmap for the arms d) Costmap generated with sensor
info from “Z” values of 0 to 0.4 m.

Costmaps for the arms:

The PR2 has a number of sensors namely a
tilt laser scanner above the shoulders, two
stereo cameras in its head and another laser
scanner in its base. All the sensors output a
point cloud which is the input to the
Costmap. The Costmap projects all these
points onto the XY plane and for every point,
a cost is assigned based on the distance to the
nearest obstacle. So, the costmaps we get are
a 2D projection of the 3D world. Also, the
obstacles are inflated by the inscribed radius
of the robot. This helps in fast collision
checking.

After we find the joint positions using
Forward Kinematics, we compute the “Z”
extents of the robot arm. The “Z” extents are
the maximum and minimum Z values of the
arms. The focus now is to get a map which
projects obstacles only within this specified
“Z” range. We accomplish this by filtering
the sensor data that the costmap gets so that
no data outside the necessary “Z” range is
given to the costmap. We do this by changing
a few parameters that are specific to the
sensor data in the costmap. This map is now
used for collision checking of the arm. Figure
4 shows a few costmaps that are obtained for
different “Z” ranges from a specific
environment using the procedure described
above.

Collision checking and planning:

Using these new costmaps and footprints, we
check for collisions of the arms as well as for
the base in the planner. The current system
(the ARA* planner in the (x,y,θ) lattice
environment) checks for collisions of the
base alone when planning. The planner is
mainly based on the one described in [1]. It
also uses a number of optimization methods
described in [1] to speed up the planning
process.

At the very first initialization step, the
planner pre-computes all its actions using the
possible motion primitives of the robot. It
also pre-computes the footprint cells for all
the actions. This enables it to plan very
quickly and in real time.

In the proposed method, the planner still
plans just for the base. But for every point in
the planned path, the planner evaluates the
footprints of the arms and checks to see if
they collide with any obstacles. The new
planner also pre-computes the necessary
actions and footprints right at the start to
improve the speed and performance.

The collision checking is done in two phases.
There is a simple broad phase collision
detection which initially checks to see if there
are any obstacles within the inscribed radius

5

of the robot/footprint. If it detects any such
cell, it definitely knows that the robot is in
collision. It no such collision is detected, it
checks to see if there are any obstacle cells
within the circumscribed radius of the
robot/footprint. If there are any cells detected
here, it goes to the narrow phase collision
detection which iterates through the cells in
the footprint to look for collisions. This
design helps the system to check for
collisions in an efficient manner.

VI. EXPERIMENTAL RESULTS

We have implemented our system on a ROS
setup using the PR2 robot model available in
ROS. A number of simulations were run and
ROS’s visualization tools Gazebo and Rviz
were used to check the feasibility of the
obtained solution. The planner was tested out
on two different environments, a simple maze
like world with walls and no external
obstacles and another world shown in Fig 3
(leftmost image). The results were compared
with those obtained using the existing
implementations. The results can be
summarized as to belong to one of the
following cases:

1) If both the arm and the base would
not collide, both the planners returned
the same solution. (except for a few
special cases tested)

2) In the cases where the arm would
collide but the base would not collide
with any of the obstacles, the
proposed planner indicated that there
was no solution possible while the
existing planner returned a solution
which would cause the arms to collide
with the obstacles.

3) In cases where both the arm and the

base would collide, both planners
indicated that no solution was
possible.

As indicated above, a few special cases were
tried out where initially both the base and the
arms were not in collision but a simple
motion would cause the arms to collide with
obstacles. A simple case tried out was to take
the start pose of the robot to be the one in
Figure 3. The goal for that case was set such
that the robot would end up facing the
opposite direction about a meter behind its
initial position. For that specific case, the
existing planner returned a solution which
asked the robot to spin in place and then
move towards the goal. This ends up causing
the arms to hit the stick in between them.

On the other hand, when the new planner is
given the same case, it commanded the robot
to go in reverse at first and then turn at a
point where the arms are out of collision of
the stick. This case proves the marked
improvement of the proposed approach in
comparison to the existing planner.

Table 1 shows the planning time for the
proposed planner with respect to the size of
the path. This shows that the new system is
capable of planning paths in real time.

Path size (no of points)

(1 point ~ 50 cm)

Proposed planner

 plan time (sec)

 17 0.05

 20 0.06

 28 0.30

Table 1: Planning time for paths of different
sizes.

Fig 5 shows another case used for testing the
planner. The final goal position set is invalid
due to collision of the arm. The existing
planner returns a path which results in
collision while the proposed planner doesn’t
return a path.

 VII. CONCLUSIONS

We have presented a general approach for
planning paths for robots with complex

6

Fig 5 - (Going Clockwise from top) a) Initial pose of the robot b) Collision of arm with the table in
case of the existing planner. c) Existing Planner shows that there is a path(in green) while there isn’t
one d) New planner doesn’t allow the goal state to be set e) New planner shows no path

shaped bodies. Our approach uses simple
projection of the 3D world onto the 2D space
to generate safe collision free paths in real
time. We also presented a method for
generating the maps and footprints which are
integral in our approach. A simple
implementation of the proposed approach
was implemented in ROS and a number of
simulations were run and verified using the
PR2 robot. The efficiency and speed of the
proposed planner were compared with the
existing method and found to be almost the
same. The proposed method was also found
to give better and collision free paths in most
of the cases.

In the future, it is important to look at various
ways to improve on the results obtained and
to develop the proposed approach for more
complicated cases. The implementation can
be extended to check for collisions in
multiple planes to achieve a better accuracy
in detecting and avoiding collisions. The
approach can also be extended to include
motion of the arm as well. A challenge in this
would be to be able to generate costmaps
very quickly. Another problem would be that
just projecting the obstacles from the top

might not be enough in some cases. The
approach can be improved to incorporate
methods such as a finding the separating
plane between the two objects and projecting
them onto that specific plane to check for
intersection.

REFERENCES

[1] Maxim Likhachev and Dave Ferguson,
“ Planning Long Dynamically-Feasible
Maneuvers for Autonomous Vehicles,”
International Journal of Robotics Research
(IJRR), Vol. 28, No. 8, 933-945 (2009)

[2] Benjamin Cohen, Sachin Chitta, and
Maxim Likhachev, " Search-based Planning
for Manipulation with Motion Primitives,"
Proceedings of the IEEE International
Conference on Robotics and Automation
(ICRA), 2010 (to appear)

[3] Maxim Likhachev, Geoff Gordon and
Sebastian Thrun, " ARA*: Anytime A* with
Provable Bounds on Sub-Optimality,"
Advances in Neural Information Processing
Systems 16 (NIPS), MIT Press, Cambridge,
MA, 2004

7

[4] “Rigid Body Simulation”, David Baraff,
Pixar Animation Studios

[5] “Physics-Based Animation”, Erleben et al,
2005

[6] www.ros.org -- ROS Documentation

