
ESE650 - Project 4
Learning Planning Costs

Arunkumar Byravan
Department of Mechanical Engineering

University of Pennsylvania

I. INTRODUCTION

The concept of Motion Planning is a key step towards
making robots more autonomous. Encoding a behaviour into
a robot, such as for a car to drive on roads, is a difficult
task. Learning by imitation is the method of programming
behaviour by demonstration. The aim of the project was to
use an overhead map of the Penn campus, define features on
it, learn to assign weights to each of these features and convert
the map into a costmap for planning. Given an expert path on
the map, learn the combination of weights for the existing
features that would make the expert path the most optimal
from a planning point of view. An example of such an expert
path for an automobile is shown in figure 1. The sections below
explain the workings of the system in more detail. Section 2
talks about the general concept and implementation, Section
3 about the training while section 4 discusses the results of
testing using the weights that were trained from section 3.

II. CONCEPT & IMPLEMENTATION

Imitation learning studies the algorithmic formalization for
programming behavior by demonstration. Since many robot
control systems are defined in terms of optimization (such as
those designed around optimal planners), imitation learning
can be modeled as finding optimization criteria that make the
expert look optimal. This intuition is formalized by the max-
imum margin planning (MMP) and the LEARCH (Learning
to Search) framework that we are going to make use of. A
simple algorithmic implementation of LEARCH, incorporating
the concept of MMP would have the following steps:

• Given a part of a map with an expert path, extract a bunch
of features from the map

• Define a ”Loss map” either in euclidean or in feature
space

• Combine the features to produce a Costmap. Subtract the
Loss map from it.

• Plan on this loss-augmented costmap. Identify the optimal
path

• Update the weights based on the differences between the
optimal and expert path. Go back to the third step. Iterate
till convergence

Each of the steps will be discussed in greater detail below.

A. Feature Extraction

Defining a good discriminative set of features is the most
important step in this approach. If the features that are defined

Fig. 1. An example ”Expert Path”

are not discriminative enough, the optimal path will never
converge to the expert path or be along features similar to those
in the expert path. In our implementation, we use 8 different
features, namely six different colors, a binary building detector
and a binary mask for intensity. Each step in feature detection
is explained in more detail below.

1) Color Features: Color is one of the simplest features
in a map. To detect different colors, color classifiers for
six different colors were trained, namely for Black, White,
Green, Gray, Red and Brown. Green was good for vegetation,
Black & Gray for buildings and roads, Brown for pedestrian
paths etc. Each color classifier had a single gaussian to
represent the points belonging to that color and would return
a mask containing the probability that a point belonged to
that particular color. The sum of probabilities over all the six
colors was set to 1. A sample result for the region of the map
in figure 1 is shown in figure 2. This was generated by finding
the max of the probabilities for each point and setting it to that
color.

2) Building Detector: Buildings are a good source of
features in urban environments. Also, if buildings are not
detected, the paths may not converge properly to the expert
path. The detection can be divided into a number of steps:

• Detecting Shadows in the image
– This is done by detecting regions in the image which

have constant intensity and whose borders show
sharp changes with respect to its surroundings

– The R,G & B channels are smoothed and subtracted
from the original values

– If abs(diff) ¡ 10 for all 3 channels, it is considered a



Fig. 2. Color feature

Fig. 3. Detected Shadows

shadow
• Compute the convex hulls of the shadows. Remove the

original shadows from them
• Find blobs in the gray and black color channels that

overlap with the convex hull. Assign them as buildings
• Also detect the black regions with the best solidity in the

image. Assign them as buildings as well
• Finally include the shadows themselves as part of build-

ings
At the end of this process, we have a binary mask with ones
at points that are buildings and zero otherwise. The various
steps in this process are illustrated in figures 3-8, taking the
region in figure 1 as an example. As you can see if figure 6,
part of the road gets detected as a building, which shows that
the system is not perfect.

3) Intensity Mask: Intensity of the image is also a godd
discriminating feature. In our implementation, we use a binary
mask where bright pixels get a value of one while darker ones
get a value of 0. Initially, the image is converted to grayscale.
Values greater than 128 are set to 1 and vice versa. This feature
serves to discriminate between roads & sidewalks and acts
as a ”pseudo” sidewalk detector. A result from the sidewalk
detector is shown in figure 9.

B. Loss Map & Maximum Margin Planning

The concept of Maximum Margin Planning is simple. Given
a set of features ”F” along the expert path, increase the costs

Fig. 4. Convex Hull of the shadows

Fig. 5. Buildings identified from Black channel

Fig. 6. Buildings identified from Gray channel

of points in the map which have features that are similar
to F and decrease the costs for those whose features differ
from F. This would ideally make the regions with ”favorable”
features more costly to cross to while making other regions
cheaper. If the system is still able to find a set of weights
that make the optimal path converge to the desired path, it
will be more robust. To facilitate this, we can compute the
”Loss map”, which will be subtracted from the costmap to give
the loss-augmented costmap that we use for planning. In our
implementation, we compute the Loss Map in feature space
rather than in euclidean space. The algorithmic implementation
is as follows:

• Given a set of feature maps and the expert path, find the



Fig. 7. Most solid Black Blobs

Fig. 8. Final mask

Fig. 9. Intensity Mask

features along the expert path
• Compute the Mean and SD of each of these features
• For each feature map, all points within 1.5*SD from the

mean are set to zero and vice versa
• Now take the mean across all these ”Feature-Loss Maps”

to get the ”Loss Map”
A sample loss map for the region shown in fig 1 is shown

in figure 10. The Loss map is used only for training and not
for testing.

C. Costmap generation

Once the features and the Loss map have been generated,
we can combine them to generate the ”Loss-Augmented

Fig. 10. An example ”Loss Map”

Fig. 11. An example Costmap

Costmap”. Each feature has a weight assigned to it. The
concept of imitation learning and maximum margin is to find
an optimal set of weights that make the desired path to be the
optimal one. In our implementation, we take the exponent of
a linear combination of the weights and features as the initial
costmap. Now, the Loss Map is subtracted from this to get the
”Loss-Augmented Costmap”. A value of 1 is added to this to
ensure that none of the costs become negative as this would
create problems for the planner. An example costmap is shown
in figure 11.

D. Planning

Once the costmap has been generated, we can plan on
this costmap. In this particular implementation, the Dijkstra’s
algorithm is used to generate the most optimal path.

E. Updating the weights

After planning, we have the most optimal path. Now, we
have to update the weights such that the desired path becomes
the most optimal. This is done in the following way:

• Identify all the features along the optimal path. Take them
as positive examples

• Identify all features along the desired path. Set them as
negative examples

• Run a regressor to find the hyperplane that best classifies
the features



Fig. 12. Iterative setup - taken from [1]

• Move a small distance along the normal of this hyper-
plane. Add the value to the old weights to get the new
ones

• The distance is defined by the stepping parameter
– step size = learn rate/iteration num

• Here, the learning rate is set to 1.
The system is conceptually pictured in figure 12. Once the

weights have been updated, we can compute the costmap again
and plan on the costmap to identfy the new optimal path.
This is done until the change in weights is very small (until
convergence). If the features are discriminative enough, this
should result in the desired path being set as the optimal path
(or a path along the same features).

III. TRAINING

The system was trained for two different modes, a pedes-
trian mode where the paths would be along sidewalks and a
vehicle mode where the paths would be along the roads. Train-
ing followed the above procedure until the path converged to
the desired path or another path along similar features that was
more optimal. THe reults of training for both the vehicle mode
and pedestrian mode are shown below. Figures 13 & 14 show
the paths at the start and after convergence. The setting is the
same one as in all the above figures. FOr pedestrian mode,
the setting is the same except that the desired path is along
the sidewalks of the building in the center. Figures 15 & 16
show the paths for pedestrian mode. In the figures, the path in
red shows the optimal path while the one in blue shows the
desired.

IV. RESULTS & DISCUSSION

Once training was done and the weights were identified,
they were used to test the system on a number of different
cases. All the figures shown below have 2 paths - one in blue
which is what a human would want to do in that case and
one in red, which the optimal path from the planner. The blue
paths in this case are just there for a reference. They are not
actually used in the testing.

Fig. 13. Training - Iteration 1 - Vehicle Mode

Fig. 14. Training - After Convergence - Vehicle Mode

Fig. 15. Training - Iteration 1 - Pedestrian Mode

A. Vehicle Mode tests

For vehicle mode, the tests were done on regions with dif-
ferent roads and lighting conditions. For testing, the loss map
was not subtracted from the costmap. Also, just one iteration is
performed as the weights have already been identified. Figures
17 & 18 show the costmap and the result for one of the tests.
As the shadow was included as a building, it can be seen that it
ends up having a high cost. The path that is generated (in red)
tries to avoid the shadow as it goes towards the goal. Figures
19 & 20 show two other tests using the trained weights for
vehicle mode. The results show that the system works pretty
well under the current set of features.



Fig. 16. Training - After Convergence - Pedestrian Mode

Fig. 17. Test 1 - Vehicle Mode - costmap

Fig. 18. Test 1 - Vehicle Mode - Optimal path(Red) vs ”ideal” path (Ideal
path just for reference)

B. Pedestrian Mode Tests

Similar tests were carried out in pedestrian mode where
the desired path was along sidewalks. The training setup was
shown in figures 15 & 16 above. From that one can see that
the desired path was along the sidewalks and vegetation (gray,
green & some white color) and devoid of any brown,black or
red. The weights generated reflect this, which can be seen from
the tests below.

• Fig 21 shows an ”ideal” path between two points on the
brown region. But the optimal path avoids any brown and
travels only along the green

• Fig 22 shows a similar setup where the optimal path is

Fig. 19. Test 2 - Vehicle Mode - Optimal path(Red) vs ”ideal” path (Ideal
path just for reference)

Fig. 20. Test 3 - Vehicle Mode - Optimal path(Red) vs ”ideal” path (Ideal
path just for reference)

Fig. 21. Test 1 - Pedestrian Mode - Optimal path(Red) vs ”ideal” path (Ideal
path just for reference)

only along the vegetation
• Fig 23 shows a setup where the robot is able to find a

simple path between the start and goal through sidewalks
and crossings. The ideal path is shown for a reference

• Fig 24 shows a result similar to that of fig 23. There is
no building detection in the white channel which leads
the path to touch the building.

C. Discussion

The results above indicate that the current setup works well
under varied start and goal positions. The combination of color



Fig. 22. Test 2 - Pedestrian Mode - Optimal path(Red) vs ”ideal” path (Ideal
path just for reference)

Fig. 23. Test 3 - Pedestrian Mode - Optimal path(Red) vs ”ideal” path (Ideal
path just for reference)

Fig. 24. Test 4 - Pedestrian Mode - Optimal path(Red) vs ”ideal” path (Ideal
path just for reference)

features and intensity along with the building detector is able
to produce sufficiently discriminative features. The building
detector though, can produce a lot of fasle positives as can
be seen in fig 6 where a part of the road gets detected as
a building. There are a few cases where the system fails to
work due to bad features. Also, the system will not work if it
is tested on something different from its training data. Figures
25 - 27 shows a case where the system does not perform well.
Part of the road, which is gray gets detected in the sidewalk
detector (fig 25) which inturn increases its cost (fig 26). So,
the path tries to avoid the gray part of the road. Based on the

Fig. 25. Vehicle Mode bad test - Sidewalk detector

Fig. 26. Vehicle Mode bad test - Costmap

Fig. 27. Vehicle Mode bad test - Optimal path in red

training data, this is the right thing to do as in the training
data, the path avoids sidewalks.

In terms of computation, the most expensive step is the
computation of the features. The computation of the convex
hull is very costly. The setup as a whole takes about 15 seconds
to run, which is pretty slow. This can be speeded up. In terms
of things to improve performance, the training can be done
over more than a single dataset as this would give us better
positive and negative examples enabling us to get a better
classifier and thereby updating the weights in a much better
fashion.



V. CONCLUSION

Using the concepts of Maximum Margin Planning and
LEARCH, a simple imitation learning setup was cre-
ated. Expert paths were chosen. Different features, namely
color,intensity and buildings were computed. A Loss-
Augmented costmap was generated from the various features
and weights. Dijkstra’s algorithm was used to plan on the
costmap. The weights were updated using a classifier. Iterating
through this process until convergence, a set of weights were
recovered. The weigts were used to test on a variety of
different scenarios and were found to work well. Performance
was analysed and improvements were suggested. Together
with a simple controller and a map building scheme, different
behaviours can be ”learned” and executed in a satisfactory
manner.

REFERENCES

[1] N. D. Ratliff, D. Silver and J. A. Bagnell, Learning to Search: Functional
Gradient Techniques for Imitation Learning, Autonomous Robots Vol.27,
No.1, 2009.

[2] N. D. Ratliff, J. A. Bagnell and M. Zinkevich, Maximum Margin
Planning, ICML, Pittsburgh, PA, 2006.


