
A Quaternion-based Unscented Kalman Filter for
Orientation Tracking

Edgar Kraft
Physikalisches Institut, University of Bonn,

Nussallee 12, 53115 Bonn, Germany
kraft@physik.uni-bonn.de

Abstract – This paper describes a Kalman filter for the
real-time estimation of a rigid body orientation from mea-
surements of acceleration, angular velocity and magnetic
field strength. A quaternion representation of the orienta-
tion is computationally effective and avoids problems with
singularities. The nonlinear relationship between estimated
orientation and expected measurement prevent the usage of
a classical Kalman filter. This problem is solved by an Un-
scented Kalman filter which allows nonlinear process and
measurement models and is more accurate and less costly
than the common Extended Kalman filter. Several exten-
sions to the original Unscented Kalman filter are necessary
to treat the inherent properties of unit quaternions. Results
with simulated and measured data are discussed.

Keywords: Tracking, filtering, estimation, Quaternions,
Unscented Kalman Filter.

1 Introduction
The determination of a rigid body orientation from vari-

ous types of measurements is one of the basic problems of
all object tracking applications. Yet the algorithmic solu-
tions to this problem still vary widely in terms of accuracy,
stability and computational effectiveness. This article de-
scribes an approach which combines the benefits of two
different key ingredients, quaternions and the Unscented
Kalman filter.

The body’s orientation is represented by a quater-
nion q, which is a number with four real components
(q0, q1, q2, q3) ∈ R.

q ≡ q0 + i q1 + j q2 + k q3 with (1)

i2 = j2 = k2 = ijk ≡ −1 and (2)

i 6= j 6= k (3)

i,j and k are three different square roots of -1 (imaginary
unities) similar to the i known from the complex numbers.

The set of quaternionsH is a superset of the complex num-
bersC and the elements can be used to describe spatial rota-
tions similarly to the way complex numbers describe planar
rotations. Quaternions offer a singularity-free description
(as opposed to Euler angles) and rotations are computed
more effectively compared to rotation matrices. A descrip-
tion of quaternion algebra can be found at [1].

The Unscented Kalman filter (UKF) is an extension of
the classical Kalman filter to nonlinear process and mea-
surement models. The main difference to the well known
Extended Kalman Filter (EKF) is that the UKF approxi-
mates the Gaussian probability distribution by a set of sam-
ple points whereas the EKF linearises the (nonlinear) model
equations. This leads to results which are usually both more
accurate (because the original equations are used) and less
costly to compute (because no Jacobi matrices need to be
calculated) [2].

2 Filter Concept
The filter concept presented here is quite general and ap-

plicable to a wide range of possible sensor systems. Its
key features are illustrated with the setup used in an early
prototype of the BlueTrak user tracking system (now re-
ferred to astracker), which is under development at the
Silicon Lab of Bonn University1. The system comprises
sensor groups for acceleration, angular rate and magnetic
field strength, each consisting of three sensors at orthog-
onal angles – a common setup for sourceless orientation
measurements. The output of this system is a set of spatial
vectors for these quantities, measured with respect to the
local (tracker) reference frame. Given this data, the filter
computes an estimate of the system state vector.

1Research activities in filter and tracking system are fundedby the Fed-
eral Ministry of Education and Research (BMBF, Germany) under contract
number 01 IR A04 D.
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2.1 State vector
The state vectorx of the Kalman filter combines the es-

timates of the orientationq and the angular velocity~ω:

x =

(
q
~ω

)
(4)

It has seven components, four fromq (q0, q1, q2, q3) and
three fromω (ωx, ωy, ωz). q is aunit quaternion, meaning
that it is of size one:

||q|| ≡
√

q2
0 + q2

1 + q2
2 + q2

3 (5)

H1 ≡ {q ∈ H | ‖q‖ = 1} (6)

This is denoted byq ∈ H1. The constraint on the size sim-
plifies the handling and deprives the quaternion of one de-
gree of freedom. The remaining three degrees of freedom
are sufficient to provide a representation for any spatial ro-
tation (actually there are two, becauseq and−q cause iden-
tical rotations). Another side effect of the constraint is that
the first four components of the state vector are no longer
independent of each other. This causes a conflict with the
concept underlying a Kalman filter and the way how noise
is treated.

2.2 Process model
The process modelA predicts the evolution of the state

vectorx and describes the influence of the random variable
(process noise) w.2 In the generalisation of the classical
Kalman filter, the process model equation is given by

xk+1 = A(xk,wk) (7)

A is an arbitrary function ofx andw. The process noise
w does neither have to be additive, nor does it have to have
the same dimension as the state vectorx. Equation (7) of-
fers a wide range of possible models and is the basis of the
process model of the filter described here. The simplest
process model, a static orientation, is only a crude approxi-
mation to the expected behaviour of the tracked object (e.g.
a human head). Thus the second simplest one, motion with
constant angular velocity, is chosen.

ωk+1 = ωk. (8)

Experimental results show this choice is sufficient for our
application to provide a robust prediction, but more elabo-
rate models can easily be implemented.

Given ~ωk of the previous state estimate and the length
∆t of the time interval, the differential rotation during this
interval has the

angle: α∆ = |~ωk| · ∆t and the (9)

axis: ~e∆ =
~ωk

|~ωk|
. (10)

2Please note that the filter described here limits itself to pure tracking
applications and does thus not consider any control inputs.

|~ωk| is the total angular velocity in◦/ sec. The correspond-
ing quaternion is given by:

q∆ =
[
cos
(α∆

2

)
, ~e∆ sin

(α∆

2

)]
(11)

This notation separates the components of the quaternion
into a scalar part (q0) and a vectorial part(q1, q2, q3), il-
lustrating the similarity between a quaternion and the an-
gle/axis notation of the orientation.q∆ is used to calculate
the new orientationqk+1 from the previous one by multi-
plying:

qk+1 = qkq∆ (12)

This quaternion multiplicationis performed according to
equations (1) to (3). It is different from a simple product
of the corresponding components [1]. The resulting rota-
tion qk+1 is equivalent to the rotationq∆ followed by the
rotationqk.

Equations (8) through (12) define the process modelA()
for the undisturbed state vector. It has already been noted
that the state vector has only got six degrees of freedom.
Therefore we choose to describe the influence of the pro-
cess noise with a six-dimensional noise vectorwk. Its first
three components (denoted by~wq) affect the orientation,
the last three components (~wω) affect the angular velocity:

wk =

(
~wq

~wω

)
(13)

Despite the values ofwk change with every time step, the
subscriptk is omitted in theq- andω- components for mat-
ters of readability. The covarianceQ of the random variable
w is a measure of the rate at which the uncertainty of the
system state estimate increases with time. In the simplest
case, the~wω-part can be assumed to be additive, meaning
that the uncertainty in the angular velocity increases for ex-
ample at a rate of 10◦/s per time interval. Similarly,~wq

causes an increase of the uncertainty in the orientation (de-
grees per time interval). Since~wq is a three dimensional
noise vector, it can not simply be added to the four compo-
nent quaternion. It has to be converted into a unit quater-
nion.

Let the random variable~wq follow a normal distribution
with covarianceQq (a 3,3-matrix) and mean 0. The vector
~wq can be regarded as arotation vector. This means that
~wq represents a random rotation with the

angle: αw = |~wq| and the (14)

axis: ~ew =
~wq

|~wq|
. (15)

The quaternion representationqw of this rotation is:

qw =
[
cos
(αw

2

)
, ~ew sin

(αw

2

)]
(16)
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Thisnoise quaternionqw is the equivalent to the noise vec-
tor ~wq. It can be applied to the original quaternion compo-
nentqk of the state vector estimate, resulting in adisturbed
quaternionq̃k:

q̃k = qk qw (17)

The respective term for the disturbed angular velocity part
~̃ωk is given by:

~̃ωk = ~ωk + ~wω (18)

Combining both equations, the disturbed state vector is:

x̃k =

(
q̃k

~̃ωk

)
=

(
qk qw

~ωk + ~wω

)
(19)

The full process model equations can be obtained by replac-
ing the components of the undisturbed vector in equations
(12) and (8) with those of the disturbed state vector:

qk+1 = q̃k q∆ = qkqwq∆ (20)

~ωk+1 = ~̃ωk = ~ωk + ~wω (21)

This implies that we choose to apply the process noisebe-
fore the process model. Finally, the process modelA() is
given by

xk+1 = A(xk,wk) =

(
qkqwq∆

~ωk + ~wω

)
(22)

with qw from equations (14) to (16) andq∆ as defined in
(9) to (11).

2.3 Measurement Model
The measurement modelH relates the measurement

valuez to the value of the state vectorx and describes the
influence of a random variable v (measurement noise) on
the measured value. The generalised form of the model
equation is (in analogy to (7)):

zk = H(xk, vk) (23)

Since the tracking system produces three different types
of measurements, three modelsH1..H3 are defined corre-
sponding to the measurements (zrot, zacc, zmag). The an-
gular velocity~ω is already part of the state vector, leading
to the simplest possible model:

H1 : ~zrot = ~ωk + ~vrot (24)

~vrot is the measurement noise of the angular velocity.
Let~g be the vector of the gravitational field (”down”) and

~b be the vector of the magnetic field (”north”).The expected
measurements of these fields are given by the transforma-
tion of ~g and~b to the tracker coordinate system. In order
to express this notion in terms of quaternions, we first have

to introduce the identification of three dimensional vectors
with so calledvector quaternions. The vector

~g =




gx

gy

gz


 (25)

will be identified with the corresponding vector quaternion

g ≡ (0, [gx, gy, gz]) ≡ (0, ~g) (26)

and vice versa. A vector quaternion is a quaternion with a
scalar value of zero. There is no restriction on the size of the
other components. Using this identity, the transformation
of ~g and~b from the global coordinate system to the tracker
coordinate system (~g′, ~b′) can be written as:

g′ = qk g q−1

k (27)

b′ = qk b q−1

k (28)

g, g′, b and b′ are vector quaternions. All multiplications
are quaternion multiplications. These equations are typi-
cal examples of the computation of spatial rotations using
quaternions [1]. The measurement models for acceleration
and magnetic field strength are hence:

H2 : ~zacc = ~g′ + ~vacc (29)

H3 : ~zmag = ~b′ + ~vmag (30)

~vacc and~vmag are the measurement noise variables of the
acceleration and magnetic field. Note that all three func-
tions H1,H2 andH3 are functions of the state vectorxk,
even thoughH1 uses only theωk-component andH2 and
H3 use only theqk-component.

2.4 Problematic Properties
Although the described models are reasonably simple,

there are two major problems which prevent an implemen-
tation of these models with a classical Kalman filter:

The first problem is thatH2 and H3 are nonlinear
functions of the state vectorxk (more precisely, theqk-
component). Even though~g′ of equation (27) is a linear
function of~g (the rotation could also be expressed with a
rotation matrix), there is generally no matrixH which ful-
fills

g′ = H qk or g′ = H xk. (31)

This means that~g′ is not a linear function of therotationqk.
The second problem is the mismatch of state vector di-

mension and its number of degrees of freedom. This leads
to a non-additive, six-dimensional process noise that cannot
be described by the process equation of the classical linear
Kalman filter.

The solution to these problems is the usage of an exten-
sion to the classical Kalman filter, namely the Unscented
Kalman filter. This filter bases on the generalised equa-
tions (7) and (23), allows nonlinear measurement and pro-
cess models and offers the necessary flexibility in dealing
with the random variables v and w.
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3 The Unscented Kalman Filter
From an abstract point of view, the Kalman filter op-

erates on a probability distribution in the n-dimensional
state vector space. This distribution is characterised by its
first two statistical moments: mean and covariance. The
process and measurement models transform this distribu-
tion. They project the distribution ahead in time or into
the m-dimensional measurement vector space. New values
for mean and covariance are computed to parameterise the
transformed distributions. Finally, the residual betweenthe
predicted measurement and the measured value is used to
compute an update of the probability distribution. The ex-
tend of this update is determined by the Kalman gainK, a
m,n-matrix whose components depend on the relative size
of the covariances of estimate and measurement.K per-
forms two functions: it weighs the update and transforms
the residual from measurement space to state vector space.

Both the classical and the Unscented Kalman filter follow
this underlying scheme, yet they do so in a different manner.
A detailed discussion of the differences and similarities can
be found in [2] and lies beyond the focus of this paper.

3.1 Sigma Points
In the beginning of every UKF recursion the previous

estimates of the state vectorx̂k−1 and its covariancePk−1

are known. The n,n-matrixPk−1 is transformed into a set
{Xi} of 2n sigmapoints, a set of state vectors which has
the same mean and covariance asPk−1. This is done by
computing a matrixS with the property

Pk−1 = ST S. (32)

S is called ”square root” ofPk−1, because ifPk−1 is just
a number (a 1,1-matrix), then S equals the usual

√
Pk−1.

SincePk−1 is a covariance matrix, it happens to be symmet-
ric and positive definite. This allows us to use aCholesky
Decompositionto computeS. The n column vectors of
S are multiplied by±

√
2n and form the set{Wi}. This

set has2n elements, which are distributed around the mean
value zero (positive and the square root cancel each other)
with the covariancePk−1. We can shift the mean to the de-
sired value (in this casêxk−1) by adding it to every element,
thus creating the set of sigma points:

Xi = x̂k−1 + Wi (33)

The original mean valuêxk−1 can be included into the set
of sigma points (with an arbitrary weighting factorκ) with-
out affecting the mean value or the covariance. The effect
of κ on the filter performance is summarised in [2]. It is
omitted here for matters of clarity.

3.2 Quaternion Sigma Points
Note that the elements of{Wi} are similar to the pro-

cess noise random vectorw of equation (13), which also

has a mean of zero but a covariance ofQ. If we interpret
the sigma points as a set ofdisturbedstate vectors, then
equation (33) describes how these disturbed state vectors
are build from the set{Wi}. In our specific case (unit
quaternion in state vector) we already know a simple ad-
dition of the random variable to the state vector is not pos-
sible because the dimensions do not match. Instead, the
sigma points have to be calculated in the way described for
the process noise, similar to equation (19).

Xi =

(
qk−1 qW

~ωk−1 + ~ωW

)
(34)

qW is the quaternion corresponding to the first three com-
ponents ofWi, ~ωW denotes the angular velocity vector built
from the remaining three components,qk−1 and~ωk−1 are
part of the previous estimatêxk−1.

This treatment of the noise has some effect on the di-
mensionality of the vectors and covariances involved. The
vectorsWi are six-dimensional, because they have the same
dimension as the process noise vector. Their covariancePk

is hence a 6,6-matrix. The sigma pointsXi, on the other
hand, are state vectors with a quaternion component and are
therefore seven dimensional. Equation (34) performs the
transition between the six and the seven dimensional set.
This transition bases on the conversion of a rotation vec-
tor representation to a quaternion representation, as given
in equations (14) to (16).

As described in section 2.2, we choose to apply the pro-
cess noise (with covarianceQ) beforethe process model.
Equations (34) and (19) show that similar steps occur dur-
ing the transformation of the state vector covariancePk

into the sigma points and in the application of the process
noise to an undisturbed state vector. Therefore we can com-
bine both steps and include the process noise into the set of
sigma points by addingQ to Pk beforethe sigma points are
calculated. This is denoted by

S =
√

Pk−1 + Q and (35)

Wi,i+n = columns(±
√

2n · (Pk−1 + Q)). (36)

A more elaborate treatment of noise using augmented state
vectors is described in [2].

3.3 Transformations of the sigma points
After the sigma points{Xi} are obtained, the process

model is used to project each point ahead in time, result-
ing in a different set of state vectors{Yi}.

Yi = A(Xi, 0) (37)

Note that no additional noise vector is being considered in
the equation above (denoted by the second argument being
0), because the influence of the process noise is already re-
presented in the distribution of the sigma points. Equation
(37) is equal to the left part of the process model equations
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(20) and (21), withXi replacing the disturbed state vector
x̃k−1.

The set{Yi} samples the probability distribution of the
a priori estimate.x̂−

k is defined as the mean value of this
distribution andP−

k is the covariance. Sections 3.4 and 3.5
describe how these values are computed from the set.

x̂−

k = mean({Yi}) (38)

P−

k = covariance({Yi}) (39)

Usually the a priori estimate is computed when a new
measurement occurs. A measurement update step requires
both the a priori estimate and an estimatez−k of the mea-
surement. The set{Yi} is thus transformed further by the
measurement modelH, resulting in a set{Zi} of projected
measurement vectors.

Zi = H(Xi, 0) (40)

The second argument is zero, since zero is the expectation
value of the random variable v. The mean value of the set
is the expected measurement vectorz−k .

z−k = mean({Zi}) (41)

Pzz = covariance({Zi}) (42)

In a classical Kalman filter, the measurement prediction is
simply z−k = Hx̂−

k . The UKF uses the mean value of the
projected distribution instead, so that generally

z−k 6= H(x̂−

k ). (43)

The explanation for this is, that the mean of the projected
distribution is generally unequal to the projected mean of
the original distribution. Both are identical ifH() is linear
- like in the classical Kalman filter. Theinnovationνk is
the difference between the actual measurementzk and its
predicted valuez−k .

νk = zk − z−k (44)

Its expected covariancePνν is the sum of the projected
state vector covariance (the uncertainty in the measurement
caused by the uncertainty in the state vector prediction)Pzz

and the measurement noise covarianceR (the additional un-
certainty induced by the measurement process).

Pνν = Pzz + R (45)

Thea posterioriestimatêxk is finally computed by adding
the a priori estimate to the innovation multiplied by the
Kalman gainKk

x̂k = x̂−

k + Kkνk. (46)

These transformations are illustrated in figure 1.

3.4 Computation of the mean
If the state vector is element of a vector space (which is

the case in the original concepts of Kalman filter and UKF,
but not in our application), the mean value is simply the
sum over all elements of the set divided by the number of
addends (2n). This is called thebarycentricmean.

Y =
1

2n

2n∑

i=1

Yi (47)

It can be used for the set of measurement vectors{Zi} and
for the angular velocity component of{Yi}.

z−k =
1

2n

2n∑

i=1

Zi (48)

The orientation component of{Yi} is more difficult, be-
cause orientations are periodic. In other words, they are
members of a homogenous Riemannian manifold (the four
dimensional unit sphere) but not of a vector space. Equa-
tion (47) does not yield correct results, as can be seen
from an example with two rotations around the x-axis:
The calculation with{−178◦, 180◦} gives1◦, but the ex-
pected result is−179◦. A different argument is that the
mean of two unit quaternions has to be a unit quater-
nion, too. The result of equation (47) with the quaternions
{(0, 0, 0,−1), (0, 0, 0, 1)} does obviously not fulfill this re-
quirement.

Our approach to this problem uses the intrinsic gradient
descent algorithm described in [3]. The key ingredient is
the definition of a new metric which describes the distance
between two elements. For orientations, we use the angle
θ of the rotation which turns one orientation into the other.
Given two quaternionsq1, q2, the rotationq12 which fulfills

q2 = q12 q1 (49)

is simply given by

q12 = q2 q−1
1 . (50)

θ can be calculated from the scalar part ofq12, see (11).

θ = 2 · arccos(qw) (51)

Starting with an arbitrary orientation, the estimate of the
mean orientationq is iterated (iteration steps are denoted
by the indext). In each step, the so callederror vectors
are computed for every set element. An error vector~ei is
the rotation vector corresponding to the relative rotationbe-
tween the set elementqi and the estimated mean of the last
iterationqt. The quaternion representationei of ~ei is

ei = qi q−1
t so that (52)

qi = ei qt. (53)
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In other words:ei rotates the mean into the set elementqi.
The barycentric mean~e of all error vectors

~e =
1

2n

2n∑

i=1

~ei (54)

is a measure of the deviation between the estimated mean
and the real mean orientation.~e is a rotation vector that
points in the direction of the real mean. The corresponding
quaternione can hence be used to calculate a better estimate
for the next iteration step:

qt+1 = e qt (55)

Since~e is used to adjust the estimated mean from iteration
to iteration it is called theadjustment vector. Its value is
zero if qt is equal to the real mean of the set of orienta-
tions. The size of the adjustment vector can consequently
be used to stop the iteration once a satisfactory precision
is achieved. Note that the result of equation (54) does not
suffer from the periodicity problem ifqt is close to the real
mean.

q = lim
t→∞

qt (56)

The error vectors~ei are introduced solely for the iterative
mean finding algorithm. Interestingly, the set{~ei} of the
final iteration finds more use during the computation of the
covariance (see there).

Switching back and forth between error vectors and their
quaternion representation could be avoided by replacing the
sum of equations (54) by a series of quaternion multiplica-
tions. Yet even though the above described method might
seem complex or confusing, it is expected to be computa-
tionally more effective since the sum of vectors is cheaper
to compute than a series of quaternion multiplications.

The starting value of the iterations is arbitrary, but it de-
termines the number of iterations needed to reach the de-
sired precision. It is therefore feasible to include the previ-
ous state vector estimatêxk−1 into the set of sigma points
(as mentioned above) and use its quaternion as a start value.

3.5 Computation of the Covariance
Let {Xi} be a set of2n (vector space) elements with a

meanx. The covariance of this set is given by

P =
1

2n

2n∑

i=1

[Xi − x][Xi − x]T (57)

The term[Xi −x] is the difference between the sigma point
and the mean of the distribution. If{Xi} is the untrans-
formed set of equation (33), there are the correspondences

x ↔ x̂k−1 and (58)

[Xi − x] ↔ Wi and (59)

P ↔ Pk−1. (60)

3.5.1 A Priori State Vector Covariance

The first matrix which has to be calculated from a set of
sigma points is the a priori state vector covarianceP−

k .

P ↔ P−

k (61)

P−

k is a 6,6-matrix and is the covariance of the set{Yi}
in the same sense in whichPk−1 is the covariance of the
untransformed set{Xi}. The corresponding mean value of
this set is the a priori state vector

x ↔ x̂−

k . (62)

In analogy to (59) we can replace the term[Xi − x] by a
six-dimensional vectorW ′

i. The prime sign denotes the fact
that this vector relates to the transformed set{Yi}.

[Xi − x] ↔ W ′

i (63)

Using this notation, equation (57) becomes

P−

k =
1

2n

2n∑

i=1

W ′

i W ′

i

T (64)

Similar toWi,W ′
i has a rotation vector component~rW′ and

an angular velocity vector component~ωW′

W ′

i =

(
~rW′

~ωW′

)
(65)

~ωW′ is the (standard vectorial) difference of the angular ve-
locity components ofYi andx̂−

k , denoted by

~ωW′ = ~ωi − ~ω (66)

~rW′ is a representation of the rotation which turns the ori-
entation part of̂x−

k into Yi. The corresponding quaternion
rW′ of this rotation is

rW′ = qi q−1 (67)

Comparing this equation to equation (52), we find that~rW′

was already calculated in form of the error vector~ei during
the last iteration of the mean finding algorithm.

3.5.2 Measurement Estimate Covariance

The uncertaintyPzz of the predicted measurementz−k
originates in the uncertaintyP−

k of the predicted state vec-
tor. It is the covariance of the set{Zi}. Since the measure-
ment vectors are elements of a vector space, their covari-
ance can be calculated similarly to (57):

Pzz =
1

2n

2n∑

i=1

[Zi − z−k ][Zi − z−k ]T (68)

As stated in equation (45), the covariancePνν of the inno-
vation is the sum ofPzz and the measurement noise covari-
anceR. Pνν is not specific to the UKF, even though it is
not computed explicitly in the classical Kalman filter.

Unscented KF: Pνν = Pzz +R
classical KF: HP−

k HT +R
(69)
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3.5.3 Cross correlation matrix

The cross correlation matrixPxz is used in the UKF for
the calculation of the Kalman gainKk (see section 3.6).
It relates the noise in the state vector to the noise in the
measurement and is computed from the sets{W ′

i} and{Zi}
according to

Pxz =
1

2n

2n∑

i=1

[W ′

i][Zi − z−k ]T (70)

=̂
1

2n

2n∑

i=1

[Yi − x̂−

k ][Zi − z−k ]T (71)

The latter equation can be used if the elements of{Yi} are
elements of a vector space. In our application the term
in the first brackets would produce invalid results, conse-
quentlyW ′

i is used.Pxz corresponds to the matrixP−

k HT

of the classical Kalman filter.

3.6 Kalman Gain and Update Equations
In the UKF, the Kalman gainKk is given by

Kk = Pxz P−1
νν . (72)

Note that the corresponding equation of the classical
Kalman filter is very similar:

Kk = P−

k HT
(
HP−

k HT + R
)−1

(73)

The update equation of thea posterioriestimate is identical
for both filters:

x̂k = x̂−

k + Kkνk (74)

The covariance update equation is also equivalent in both
filters, as can easily be shown with the correspondences de-
scribed above.

Pk = P−

k − Kk Pνν KT
k (75)

=̂ (I − Kk H) P−

k (76)

Equations (74) and (75) are the final steps of an UKF filter
cycle. The updated valueŝxk andPk become the basis of
the next cycle. This concludes the description of the key
steps of an UKF for the orientation estimation problem.

3.7 Summary
The filter cycle of a Quaternion-Based Unscented

Kalman Filter comprises the following steps:

1. The sum of previous estimate error covariancePk−1

and process noise covarianceQ is transformed into a
set{Wi} of 2n six-dimensional vectors. This set is
distributed around zero with the covariancePk−1 +Q.

2. The previous state estimatex̂k−1 is applied to{Wi},
resulting in the set{Xi} of 2n seven-dimensional state
vectors (sigma points).

3. The process modelA() transforms{Xi} into {Yi}.

4. The a priori estimatêx−

k is computed as the mean of
the transformed sigma points{Yi}.

5. The set{Yi} is transformed into the six-dimensional
set{W ′

i} by first removingthe mean vector̂x−

k from
each element and then converting the quaternion part
into a rotation vector.

6. The a priori process covarianceP−

k is computed from
{W ′

i}. This concludes the time update step (”predic-
tion”).

7. One of the three measurement modelsH1,H2 or H3

is used to project the sigma points{Yi} into the
three-dimensional measurement space, yielding the set
{Zi}.

8. The mean of{Zi} is computed, giving the measure-
ment estimatez−k . This is compared to the actually
measured valuezk, their difference beingνk, theinno-
vation.

9. The innovation covariancePνν is determined by
adding the measurement noiseR to the covariancePzz

of the set{Zi}.

10. The cross correlation matrixPxz is computed from the
sets{W ′

i} and{Zi}.

11. The Kalman gainKk is first computed fromPxz and
Pνν and then used to calculate the a posteriori estimate
x̂k and its estimate error covariancePk, which con-
cludes the measurement update step (”correction”).

��

�� �� ��

������

��

Figure 1: Schematic view of the described filter.
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Figure 2: Comparison between simulated path (crosses)
and reconstructed path (line).

4 Results
Figure 2 shows the result of a simulated random walk

(crosses) in comparison to the path reconstructed by the de-
scribed filter (black line). The simulated path is produced
by integrating a disturbed angular velocity vector

~ωsim =

(
ωx

ωy

0

)
. (77)

Here, the components of~ω are interpreted asEuler angles
denoting a rotation around the global x-axis followed by a
rotation around the global y-axis.~ωsim is disturbed by two
random variablesvx, vy which have a zero mean gaussian
distribution with the varianceQsim/f . f is the frequency
with which the simulated path is sampled (here: 50 Hz).

( ωx

ωy

0

)

t+∆t

=

( ωx

ωy

0

)

t

+

( vx

vy

0

)
(78)

The resulting motion is similar to the movement which oc-
curs if the user of the head tracking systems watches a fly
on its erratic path around the room.

At each sample point, the measurement models are used
to compute measurements of acceleration, angular velocity
and magnetic field from the current orientation. These ”per-
fect” simulated measurements are subsequently disturbed
by additive, gaussian noise variables with the covariances
Racc, Rrot andRmag. The Kalman filter uses the disturbed
measurements to compute a new estimate of the orienta-
tion which is then decomposed into the components around
the global x- and y-axes. Ideally, these components should
match the simulated orientation given in Euler angles.

Figure 2 shows an interval of about three seconds from a
ten seconds simulation. In this example, the reconstructed

path follows the simulated points closely. The covariances
of the filter were chosen equal to the corresponding covari-
ances of the simulated measurement noise. Like expected,
a higher measurement noise causes a higher reconstruction
error. Despite both the type of simulation and the specific
parameter set for this example are designed to suit the filter,
the results demonstrate the general validity of the described
filter concept.

Operation of the filter with real measurements shows
the desired performance as well. A set of filter parame-
ters which produces smooth, responsive and stable results
is easily found. Comparisons with other filter concepts in
terms of performance, stability or accuracy have not been
made.

5 Conclusion
A quaternion-based Unscented Kalman Filter for the es-

timation of a rigid body attitude has been described. The
problems caused by the inherent properties of orientations
were discussed and solutions to these problems presented.
Even though the original UKF can already handle nonlin-
ear models and noise of arbitrary dimension, some exten-
sion were necessary to deal with state vectors which are
not elements of a vector space and whose components are
subject to constraints. These extensions were made for the
example application of a sourceless head tracking system.
The described filter shows the desired performance on both
simulated and measured data.
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