A simple navigation framework for the RASCAL
robot

Arunkumar Byravan
Department of Mechanical Engineering
University of Pennsylvania

Abstract—In this work, we explore a simple navigation frame-
work for semi-autonomous robots in outdoor environments.
Three main components were conceptualized and implemented.
Accurate localization is achieved by fusing measurements from
an onboard GPS, IMU and odometry. A LIDAR mounted on a
tilting platform is used to generate a local map of the surrounding
environments. The robot then uses this map to plan a path and
navigate around obstacles. A Finite State Machine is developed to
reflect the set of possible actions the robot can take. We present
results from each of the individual components and evaluate their
performance.

I. INTRODUCTION

NASA’s Revolutionary Aerospace Systems Concepts Aca-
demic Linkage (RASCAL) competition challenges teams to
build a planetary rover for semi-autonomous space exploration.
The rovers explore the environment, looking for objects of
interest (colored rocks), which the rovers are supposed to
collect. The rovers are expected to have some degree of
automation, but they can be remotely tele-operated through a
broadband card. The environment is mostly devoid of features
and consists of mock up surfaces of the Moon, the Mars and
a rock yard. An image of the testing site is shown in figure 1.
To this end, this work aims to establish a robust framework for
efficient navigation of the rover. The following sections explain
each of the various components in greater detail. Section 2
talks about related work on localization and navigation through
outdoor environments. Section 3 explains the localization
module. Section 4 talks about the State Machine, Costmap
generation and planning. Both these sections are self consistent
and give results from various experiments on each of the
individual modules. Finally, section 5 summarises the work
and gives concluding remarks.

II. RELATED WORK

The Kalman Filter is an estimation technique which can be
used to track the state of the system even when the system
model is not accurately known and there is a lot of noise
in the system. Since its introduction, it has become one of
the most widely used and robust techniques for estimating
the states of noisy systems. The Kalman filter has also been
applied to the problem of estimating a robot’s 3D pose, both
indoors and ourdoors. There has been a lot of research related
to robot localization using a multitude of sensors. [1] gives an
efficient algorithm for tracking the 3D pose outdoors using a
low cost GPS, Inertial and Visual sensors. They use a multirate
Extended Kalman Filter (EKF) to fuse observations from the

Fig. 1.

Test site for NASA’S RASCAL competition

various sensors. [4] talks about a Rao-Blackwellized particle
filter based approach for 3D localization. Observations from
GPS, a low cost IMU and Odometric sensors are integrated to
give an accurate and drift-free pose estimate. The approach has
many advantages compared to a simple Kalman Filter, but is
also more computationally expensive. [2] describes an attitude
filter based on the Unscented Transform and quaternions that
gives very good results and avoids the singularities of a
different rotation representation. It is the basis for the attitude
filter used in our system. We now proceed to explain the
concpetual and implementation specific details of out work.

III. LOCALIZATION

Accurate localization of the robot’s position over time is
crucial to any exploration that the robot does. Our specific
application entails us to operate in an outdoor environment
devoid of features. The robot is equipped with a number
of sensors, including an omni-directional camera, a GPS,
an IMU and encoders. The estimation of the 3D pose of
the robot can either be done jointly or the attitude can be
estimated separately from the position. We have chosen to
do the latter, wherein we use two separate UKF’s, one for
the estimation of the attitude and one for the estimate of the
position and heading. The IMU is used for the purpose of the
attitude estimation, while for the second UKF, a combination
of IMU,GPS and Encoders are used.

A. Unscented Kalman Filter

The Unscented Kalman Filter is an extension of the general
Kalman Filter to non-linear systems. Instead of linearizing the

model (as the Extended Kalman Filter does), the distribution
is transformed to a set of “sigma” points through the
Unscented Transform. These sigma points are then updated
using the true non-linear model which results in a more
accurate estimate than the EKF. Also, it is computationally
effective and there is no need to evaluate any Jacobians which
are needed for an EKF.

1) Why UKF?: As described before, we have two different
filters, one for the attitude and another for the position. The
attitude is parametrized as a quaternion and so the state is 4
diumensional. Rotations in general are a non-linear space and
the process updates therefore are not strictly linear, which
facilitates the use of the UKF. The attitude filter is very
similar to the one described in [2] and will not be explained in
greater detail in this work. Our focus is more on the position
estimation and we will assume that the attitude is given. As
for the position, it is parametrized as a 3 dimensional state
[X,Y, Heading]”. Due to lack of measurements in the IMU
along the heading direction, the heading given by the attitude
filter drifts over time and we have chosen to re-estimate this.
In our application, we have assumed a differential drive model
for the robot and so the process update depends non-linearly
on the heading and the control input (encoders). This drives
us to use a UKF.

2) Sensors: We have chosen to use a combination of
IMU, GPS and encoders to achieve localization. Initially, we
had tried using an omni-directional camera for estimates of
the yaw. During testing on the actual rover, we found out
that the robot vibrates and pitches a lot which induces blur
and random motions in the omni-directional image. This
along with computational constraints made the camera option
unfavorable.

3) Filter Details: The implementation is based on the
general UKF given in [3]. The state is a 3 dimensional vector
of X and Y positions and Heading. The yaw rate from the
IMU is used for the process udpate for the yaw. Encoder
measurements are used as the process update for the X and
Y position. These updates depend on the current heading and
pitch and roll of the robot. The X and Y positions and the
Heading from the GPS are used as measurement updates. The
working of the filter is detailed in algorithm 1.

4) GPS/Encoder calibration: The Global Positioning Sys-
tem (GPS) computes the latitude, longitude and heading of
a moving object based on triangulation using a number of
satellites. The heading that we get from the GPS is with respect
to a North - East - Down reference frame. Without knowing
the robot’s orientation w.r.t this frame, measurements from the
encoder(which are in the body frame) cannot be integrated
with the GPS. A magnetometer can give the robot’s absolute
orientation which can then be used to do the fusion. But, a
magnetometer is easily affected by the environment and needs
careful tuning which lead us not to use one in our setup. In

Algorithm 1 Unscented Kalman Filter for 2D state estimation
Calibrate GPS and Encoders to obtain initial orientation
Initialize State to [0; 0; InitialOrientation)]

Initialize State covariance R and noise
while New measurement do
if IMU then
Process update for heading
Sigma < chol(const * R + GyroProcessNoise)
Sigma < Sigma + [0; 0; Y awrate * dt)
State <= mean(Sigma)
Sigmams = Sigma — State
R < (Sigmams) x (Sigmams)
else if Encoders then
Process Update for X & Y
Compute dz & dy using motion model
[dxw; dyw; dzw; 1] <= RpodytoWorld * [dz; dy; 0; 1]
Sigma < chol(const x R+ Encoder ProcessNoise)
Sigma < Sigma + [dzw; dyw; 0]
State <= mean(Sigma)
Sigmams = Sigma — State
R < (Sigmams) * (Sigmams
else if GPS then
Measurement update
Meas < [GPSx; GPSy; GPSpeading]
Innov < Measurement — State
Compute Innovation covariance
Compute Cross correlation and Kalman Gain
Update State and State Covariance
end if
end while

T

)T

order to perform this calibration, the robot initially waits till
it gets a good fix on its position and then drives straight while
accumulating GPS readings. It then computes the mean of
the headings from the GPS. This mean heading is used as
the initial orientation estimate of the robot.This step could be
omitted and the robot’s initial orientation can be taken as zero,
in which case the Kalman Filter would eventually converge to
its actual orientation.

B. Results and Discussion

The system described above was implemented on a mobile
robot and tested on datasets collected outdoors. Most of the
data has been collected from areas which have an unobstructed
and clear view of the sky. The robot was driven around using
a joystick during the runs. The robot is equipped with a low
cost inertial sensor and encoders. The attitude filter runs in a
microcontroller and spits out estimates of the robot’s roll,pitch
and yaw. Both the IMU and the attitude filter run at 100 Hz.
The encoders run at 40 Hz. The robot also has a U-Blox
EVK-6H GPS Evaluation kit which gives position and heading
estimates at 5 Hz. The heading calculation is decoupled from
that of the position. The GPS was tested beforehand and
was found to have an accuracy of about 1 - 1.5 m on open
ground with no buildings. Results from experiments on the

Rabot trajectary

GPSAMUEN: Fused
Raw GPS position
Encoders & GP3 Heading

W-positian{m)

-40 -35 -30 -25 -20 -15 -10 -5 a 5
H-position(t)

Fig. 2. Robot trajectories

Robot trajectary

GPS/AMUENC Fused
i} * Raw GPS position
Encoders & GPS Heading

-20

-30

‘Y-positiongm)

40

-850

-60

70 L L L L L L '
=120 -100 -0 -0 -40 -20 1} 20

K-position{m)

Fig. 3. Robot trajectories

localization module are shown in the figures below. Figures
2,3 & 4 show the trajectories taken by the robot. The red
trajectory is the raw GPS value, the blue the result of the sensor
fusion using the UKF and the green using the Encoders and the
heading from the GPS alone. From the plots, we can see that
the UKF does well in fusing the high frequency components
(IMU & Encoders) with the low frequency estimate from the
GPS to give a smooth trajectory. The system also does not
drift a lot except in a few cases where we can see jagged
edges in the trajectory. In these places, it can be seen that
the heading lags the position from the GPS. Figures 2 and 3
have loop closures in them and it can be seen that the system
is able to close the loop without a lot of error. The average
error in all the cases was found to be less than 2 m which
also shows the accuracy of the GPS readings. Due to ground
truth not being available, detailed analysis of the accuracy of
the system could not be done. An attempt was made to collect
ground truth data by driving the robot on a straight line along
the curb, but due to presence of builds and trees in the vicinity,
the GPS readings showed a lot of errors.

C. Improvements

There are a number of improvements that can be made to the
above mentioned system. A sensor such as the magnetometer
that gives the yaw value more accurately can be implemented.
As the heading is computed using the velocity components
in the North and East directions, it is not accurate in cases

Rabot trajectary

GPS/MU/ENC Fused
25 N * Raw GPS position
~ Encoders & GPS Heading

Y-positian(m)

5 . L . L . L . .
-35 -30 -25 -20 -15 -10 -5 i} 5
H-position(i)

Fig. 4. Robot trajectories

where the robot just spins in place or moves very slowly.
Also, a joint estimation of the robot’s attitude and position can
be done, similar to the method described in [4]. Instead of a
UKE, a particle filter can be implemented. The particle filter
would be more effective in resolving orientations compared
to the existing UKF as it samples a much bigger space of
orientations. We are currently working on this particle filter
approach with process and measurement updates using the
Unscented Transform (due to non-linear process updates).

IV. OPERATING FRAMEWORK/STATE MACHINE

Any framework to assign states to a robot must reflect its
goal and capabilities. Our main goal for the RASCAL rover
is to explore the environment, detect and pick up objects of
interest, doing so at the fastest possible time. There are a
number of obstacles, either in the form of a rocky terrain or a
moon crater and so on. Also, there is a possibility of human
control. To combine all these and get the system working
efficiently, we need a strong framework and established states
that the robot can be in. We implement this in the form
of states in a Finite State Machine. There are quite a few
advantages to this approach. At any point of time, the robot’s
state is known and can be easily traced. The transitions
between the states are also well defined and there can be no
bad jumps. This is also very useful in our setting as it allows
for quick and easy control.

A. States

Our implementation of the state machine has four primary
states, two of which are simple wait states where the robot
waits for a specific command. The remaining states are the
key components of our system. The states, their actions and
transitions are summarised below.

o Initial state
— Robot starts off at this state.
— Waits until the localization module computes a good
pose estimate
— Has a single transition over to the ”Wait state”
o Wait state

— Robot waits till it gets a "GOAL”

— Goal can be specified from external computer or
computed through a color classifier
— User specified goal has highest priority so as to
enable the user to control robot’s actions
— Robot transitions to ”Scan state” once goal is reached
o Scan state
— To reach the goal, robot needs a map and a path
through the environment
— First, robot uses a LIDAR mounted on a tilt platform
to create a local map
— Robot then plans on this map to generate a planned
path
— It then transitions over to the Trajectory Follower
o Follow state

— Robot takes the planned path and tries to follow it
— We plan to use a Trajectory Rollout type controller
— Has not been implemented yet

The above mentioned states are the most important states.
In addition to this, there are a few other simple states which
command the robot to perform a specific operation such as
going forward, turning, backing up and so on. Also, there are
a number of state transitions that have not been mentioned
above. A few are:

e The robot transitions to the Scan state as soon as it
has received a User defined goal point irrespective of its
current state(Except if it is in the Initial state)

o Once the robot has reached a goal point, it transitions to
the Wait state

e In case of a timeout in the Scan or Follow states, the
robot transitions to the Wait state

« In the Follow state, if the robot travels a distance greater
than 2 meters, it transitions to the Scan state. This is to
make sure that the robot has sufficient information from
the map about possible obstacles on the ground.

Two main components of the Scan state deserve special
mention, namely the Costmap generation and the Planner.

1) Costmap generation: The RASCAL robot is supposed
to operate in an unknown environment and as such, does not
know its layout. Even though there is a human in the loop
who can help the robot avoid obstacles, it is best to create and
store a map of the robot’s environment. To serve this purpose,
we have designed a simple method to create a costmap. The
rover is equipped with a LIDAR on a tilting platform. This
was chosen rather than a vertical LIDAR as most of the
obstacles that we may encounter may be rocks rather than
walls. Once a goal point is specified, the robot spins until it
faces the direction of the goal. It then scans the environment
by tilting the laser. Once these points are obtained, they are
rotated and translated to the world frame using the robot’s
current pose estimate and the angle of the tilting platform.
The 3D points are then projected onto the XY plane (Z is
up). Points which belong to ground are isolated and their

Fig. 5. 3D points from LIDAR on tilt platform

costs reduced while obstacles have a higher cost. Unexplored
regions have a medium cost. The costmap so obtained is used
by the planner to generate a path to the goal.

2) Motion Planner: Now the robot needs to plan a safe
and traversable path to the goal from its current position.
The obstacles are at first inflated by the robot’s footprint
and planning is done on this new costmap. An efficient
implementation of the AStar search algorithm is used for
this purpose. Euclidean distance is used as the heuristic. The
implementation was done in C++ using a priority queue to
efficiently sort the states. The planner is capable of operating
close to real time even on maps of size 1000x1000.

B. Results and Discussion

The State Machine conceptualized above was developed and
extensively tested indoors. Each of the individual components
were tested and their performance was evaluated. Figures 5,6
and 7 show the 3D lidar points, the costmap and the costmap
with inflated obstacles respectively for a particular test case.
Note the scale on the X and Z axes in figure 5. Points on
the costmap which have a low cost are shown in blue. The
planned path is shown in red in figures 6 and 7. The test
was conducted with the robot in a hallway with a door to
its side. Goal positions were specified by an external user.
From the costmap, it is clear that the robot is able to create
an accurate enough map of the environment for path planning.
All these were computed in real time on the robot with the
various transitions listed as above. Due to the absence of a
proper trajectory follower, no tests were conducted where the
robot tried to reach the goal point. Most of the other states and
their transitions were tested and found to be proper. Figures 8
and 9 show similar results.

C. Improvements

The performance of the State Machine must be tested
outdoors with all the states assigned. A trajectory follower
type controller can be implemented. The costmap generated
is good only for local navigation. To overcome this, the rover
can stop once every few meters and “refresh” its map of the
environment. This would make the system more robust and
would also prevent the robot from bumping into obstacles.
Online obstacle detection may also be performed by fixing

Fig. 6. Costmap from LIDAR, planned path in red

Cotuts et s e i

sl i

ol 5

sl

B o
m 0 a

50 an 0

Fig. 7. Costmap with inflated obstacles, planned path in red

3D points from the LIDAR

.

Z-amis
L

Y-axis
R-awis

Fig. 8. 3D points from LIDAR on tilt platform

Ottt v it -

- ‘-
ool F o

Fig. 9. Costmap with inflated obstacles, planned path in red

the LIDAR at a particular angle. Also, pose information may
be integrated with the map to create a global map of the
environment. Finally, the 3D LIDAR points can also be used
to detect the slope of the ground and as such may serve as a
“ramp” detector.

V. CONCLUSION

In this work, we presented a simple structure for outdoor
localization and navigation in unknown environments. An
Unscented Kalman Filter based approach was used to track the
robot’s position over time. A state machine was implemented
to limit the states of the robot and allow for easy transitions
from one action to another. The subsystems were tested and
their performances were evaluated. The components were
found to be accurate and efficient at trying to solve the problem
at hand. A few additions to the existing systems are also
being developed to complete the system and further boost
performance.

REFERENCES

[1] F. Ababsa, Advanced 3D Localization by Fusing Measurements from GPS,
Inertial and Vision Sensors, Autonomous Robots Vol.27, No.1, 2009.

[2] E. Kraft, A Quaternion based Unscented Kalman Filter for Orientation
Tracking, ICIF Vol.1, 2003.

[3] S.J. Julier and J. K. Uhlmann, A new extension of the Kalman Filter to
Non-linear systems, Int. Symp. Aerospace/Defense Sensing, Simul. and
Controls, 1997.

[4] P. Vernaza and D. D. Lee, Rao-Blackwellized Particle Filtering for 6-
DOF Estimation of Attitude and Position via GPS and Inertial Sensors,
ICRA, 2006.

[S] G. Welch and G. Bishop, An Introduction to the Kalman Filter, Tech-
nical Report TR 95-041, University of North Carolina, Department of
Computer Science, 1995

