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Abstract—This paper develops a comparative framework for
the design of actuated inertial appendages for planar, aerial
reorientation. We define the Inertial Reorientation template,
the simplest model of this behavior, and leverage its linear
dynamics to reveal the design constraints linking a task with
the body designs capable of completing it. As practicable inertial
appendage designs lead to morphology that is generally more
complex, we advance a notion of “anchoring” whereby a judicious
choice of physical design in concert with an appropriate control
policy yields a system whose closed loop dynamics are sufficiently
captured by the template as to permit all further design to
take place in its far simpler parameter space. This approach
is effective and accurate over the diverse design spaces afforded
by existing platforms, enabling performance comparison through
the shared task space. We analyze examples from the literature
and find advantages to each body type, but conclude that tails
provide the highest potential performance for reasonable designs.
Thus motivated, we build a physical example by retrofitting a tail
to a RHex robot and present empirical evidence of its efficacy.

Index Terms—Tails, Biologically-Inspired Robots, Legged
Robots, Mechanism Design, Motor Selection

I. INTRODUCTION

TAILS and tail-like appendages have shown promise to
greatly enhance robot agility, enabling such feats as

aerial reorientation [1–3], hairpin turns [4–6], and disturbance
rejection [7–9]. These behaviors are examples of Inertial Re-
orientation (or IR), whereby internal configuration adjustments
generate inertial forces that control the body’s orientation. The
stabilizing function of inertial appendages appears to be im-
portant to animals across a wide variety of behaviors and size
scales, suggesting that this mechanism could be broadly useful
for robotic systems such as the small, wheeled Tailbot [2],
Fig. 1(a), or the larger, legged RHex [10, 11], Fig. 1(b). While
tails may be the most conspicuous example of IR morphology,
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Fig. 1. (a) Tailbot [2, 17] (b) RHex [10, 11] with a new tail, and with
approximately sized image of Tailbot inserted.

any internal movement of mass can induce rotation in a body.
Animals also use the inertia of their legs [12, 13], wings [14],
or spine [15] to accomplish similar behaviors, and engineered
systems use radially symmetric wheels inside satellites or on
terrestrial vehicles [16].

This paper presents a formal framework for the selection
and comparison of robot bodies capable of a planar, aerial,
inertial reorientation task. Design of morphology for a dy-
namic behavior like IR is a persistently challenging problem
in robotics, since task completion must be enforced over
the full design space through the execution of a hybrid and
possibly nonlinear dynamical system. We propose a reduc-
tionist approach, collapsing the complexity of the variously
possible body plans to a far simpler model whose dynamics
we can solve. The task-feasible set of this simple model,
together with its generic controller, is then pulled back through
this “morphological reduction” to specify the more complex
design. We use this framework to evaluate the merits of a range
of possible morphologies, and to design a new tail for the
RHex robot, Fig. 1(b), documenting its efficacy for recovery
from otherwise injurious falls as illustrated in Figs. 7 and 9.

A. Prior Work

The study of inertial reorientation dates to the 19th century
“falling cat problem” [15]. More recent studies show that by
swinging their tails, lizards can self-right in less than a body
length [18], reorient through zero net angular momentum IR
maneuvers [19], and control their attitude in leaps [17]. To the
authors’ best knowledge, the first robot to utilize an inertial
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tail is the Uniroo, a one leg hopper that stabilized its body
pitch in part with an actuated tail [20]. Other early robotic
tails were passive or slowly actuated and used to maintain
contact forces while climbing vertical surfaces [21, 22]. The
idea of using a robot’s existing limbs as tail-like appendages
was first explored as a method of “legless locomotion” [23].

The effectiveness of the IR capabilities in lizards inspired
the creation of Tailbot, Fig. 1(a), a robot with an active tail
which enabled disturbance regulation [17], air-righting, and
traversing rough terrain [2]. Since Tailbot, there has been an
explosion in the number of robotic tails for reorientation [3–6,
24] and stabilization [7–9, 25, 26] in both aerial and terrestrial
domains. Non-inertial tails have also seen continued interest
with tails that affect the body through substrate interaction
[27–29] and aerodynamics [30, 31]. Recently, other morpholo-
gies have also been explored including two degree of freedom
tails that greatly expand the range of possible motions [9, 25,
32] and flailing limbs that reuse existing appendages [33].
Many of these robots draw their inspiration from a diverse
variety of animals, including moths [24, 34], seahorses [35],
kangaroos [9], cheetahs [6, 7, 26], and even dinosaurs [17, 36].
The growing interest in robotic IR appendages demonstrates
the potential benefits of inertial forces and motivates the need
for truly comparative design methodologies.

B. Paper Outline and Contributions

To instantiate the appendage design problem, in this work
we consider an aerial IR self-righting task. For whereas while
the machines examined in this paper are nominally terrestrial
locomotors, their rapid, dynamic behavior includes leaps,
falls, and other short aerial phases where their limbs cannot
provide control authority through ground reaction forces. We
will restrict motion in both the templates and anchors to
a 2D plane, in the absence of external forces. The task is
defined as a finite-time, zero angular momentum reorientation:
a rotation of the body configuration θb from initial condition
θb(0) = θ̇b(0) = 0, to rest at some final angle θb,f in a desired
time tf . That is,

θb(tf )− θb,f = 0; θ̇b(tf ) = 0. (1)

Because any internal motion – whether a rotation of tails,
wheels, limbs, or even body bending – must yield some inertial
reorientation in flight, we need a method of directly comparing
the performance and design merits of a diverse array of poten-
tial body structures. The simplicity of the shared underlying
behavior is suggestive of a template [37], or simplest model,
whose tractable dynamics yield a compact description of the
relationship between morphology and task performance. We
present the IR template (Section II-A) and solve its simple
dynamics (Section II-B) relative to the task (1) (Section II-C),
revealing the constraints linking that task with the set of body
designs capable of completing it. We then refine that set by
reducing it to the instances where the control and gearing are
optimal for the assigned task (Section II-D).

The embodiment of this simple template in a more complex
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Fig. 2. The Inertial Reorientation Template is a planar, two-link model
parametrized in part by Power, P , Effectiveness, ξ, Appendage Stroke, sr ,
and Driven Inertia, Id; designs satisfying the constraints are feasible with
respect to the task, (1). More complex IR bodies (anchors) may be designed
or compared through the template by mapping their physical parameters to
those of the template, using a Morphological Reduction, Ξi, as summarized
in Table II.

model of real morphology (an anchor, [37])1 provides for a
shared parametrization of IR efficacy. This is a new idea that
enables the design and direct comparison of different candidate
bodies through a generalized template–anchor relationship
that we now briefly describe intuitively before charting its
technical development in this paper and in Appendix A.
Whereas in this problem the template degrees of freedom
typically embed naturally into those of the morphologies,
the same is not true of their respective design parameters.
Thus, our agenda of reusably “anchoring” a template design
in a variety of bodies requires a new mapping between their
parameter spaces. Beyond the specifics of the task, one of the
central contributions of this paper is to articulate and formalize
the role of this morphological reduction. As we detail in
Section III, mapping the design parameters (mass, length, and
inertia, etc) of a detailed model down to the simpler template
parameters, carries a pullback of the simple template controller
back up to the anchor as well.

We define anchor models for tails (Section III-A), reaction
wheels (Section III-B), and synchronized groups of limbs
(hereafter termed “flails”, Section III-C), and propose mor-
phological reductions from their respective parameter spaces
to the parameter space of the template (summarized in Fig. 2
and Table II). We use these morphological reductions to find
evidence of similar template–anchor relationships in design
examples from a dozen different platforms (Section IV-A),

1 Here, there is no time-asymptotic specification, and therefore no attracting
invariant set as achieved empirically, e.g. in [10, 38], and formally as well, e.g.
in [39]. Instead, we observe that the anchors manifest a close approximation to
the template over large, interesting regions of parameter spaces, Appendix A.
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which exhibit close (or in some cases exact) kinematic and
dynamic approximations (depicted in Fig. 5). The reductions
afford a performance comparison of each morphology (Sec-
tion IV-B), and a more general comparative scaling analysis
(Section IV-C).

We assess anecdotally the utility of our design framework
in three ways. First, we use our design specification to analyze
the tail added to a RHex hexapedal robot [10] (specifically X-
RHex Lite, XRL [11], Fig. 1(b) and Section V-A1). Second,
we use the common IR template to compare the RHex tailed-
body instantiation with a limbed-body instantiation using only
RHex’s legs (Section V-A2). Finally, we present empirical
results (Section V-B) that illustrate the manner in which IR
behaviors can help robots perform high-performance, poten-
tially injurious aerial reorientation using inertial limbs.

In the interest of space and clarity, we have omitted the more
lengthy derivations required to reach some expressions in this
paper; the full derivations can be found in the accompanying
technical report, [40].

II. TEMPLATE BEHAVIOR

This section develops the simplest Inertial Reorientation
(IR) model and solves its dynamics explicitly in the context
of the task specification. From this, we derive two constraints
specifying the feasible portion of parameter space over which
the robot design may be optimized (or – more practicably
– “toleranced,” as we exemplify in Section V) to best meet
performance needs outside the reorientation task. To this end,
we define the IR template (depicted in Fig. 2) as a planar
system comprised of two rigid bodies – an “appendage” and
a “body” pinned at their shared centers of mass (COMs). A
motor applies a torque acting on θr, the internal angle between
the bodies, and can steer θb, the orientation of the body,
through the action of a controller. We will thus choose (θr, θb)
as our generalized coordinates. The appendage moment of
inertia (MOI), Ia and the template body MOI, Id, specify the
passive mechanics.

The template’s behavior during the reorientation task is
fully parametrized by a combination of its physical (body)
parameters, powertrain and control parameters, and its task
specification, defined throughout the rest of this section and
summarized in Table I as,

p = [ξ, Id, sr, P, ωm, ts, θb,f , tf ] ∈ P. (2)

Not all parameter sets p are self-consistent, as clearly only
certain bodies are capable of completing a given task. The
remainder of this section will be dedicated to finding a
parametrization of the constraints defining the feasible subset
of parameters, R ⊂ P . Any parameter set in R is “task-
worthy” in the sense that its physical parameters enable
completion of its task description. The “task-worthy” set will
be used to solve two design problems:
P1 Body Selection: The task specification is fixed at the

outset and the other parameters are chosen to satisfy its
completion.

P2 Performance Evaluation: The physical parameters are
fixed and a given tf and θb,f are queried against a
resulting feasible set.

gh, gθ Time and angle functions (9), (10)
g̃h, g̃θ, g̃c Normalized time and angle functions (15), (16), (18)
HO Angular momentum (3)
Ia, Ib, It Inertia of the appendage, body, and tail (II-A), (III-A)
Id, Id,t Driven inertia of the template and tail (II-B), (42)–(44)
lb, lt Length from the pivot to the body and tail (III-A)
kp, kt, ks Power, time, and speed constants (23), (II-C2)
`i Limb offsets (III-C)
L Characteristic body length (IV-C)
mb,mt Mass of the body and tail (III-A)
mr Reduced mass (31)
N Number of limbs (III-C)
p ∈ P Template parameters (2)
pi ∈ Pi Anchor i parameters (29), (47), (50)
P Motor power (II-B)
R,R∗,Ri Allowable parameter set (12), (26), (28)
sr Range of motion (II-A)
t, ts, th, tf Time, switching, halting and final time (II-A), (II-C1)
t̃, t̃s, t̃c, t̃h Normalized, switching, critical, and halting time (II-C1)
γ Time scaling parameter (14)
η Nonlinearity parameter (33)
θb, θt, θr, θh Body, tail, relative, and halting appendage angles (II-A)
θ̃ Normalized relative angle (II-C1)
ξ, ξt Effectiveness of the template and tail (4), (32)
ξw, ξl Effectiveness of the reaction wheel, and limbs (48), (53)
Ξi Morphological reduction i (27)
τ Motor torque (II-B)
ωm, ω̃m Motor and normalized no-load speed (II-B), (II-C1)

TABLE I
KEY SYMBOLS USED THROUGHOUT THIS PAPER WITH SECTION OR

EQUATION NUMBER OF INTRODUCTION MARKED.

We next derive the kinematics and dynamics of this IR
template model, and then solve those dynamics in normalized
form to reveal the feasible set R.

A. Template Kinematics

For a planar, single degree of freedom IR system in free fall,
the rotation available in the body’s workspace is limited by the
capacity for internal motion. To derive a functional relationship
between the (internal) shape angular velocity and the (external)
body orientation velocity, we will use the non-holonomic
constraint resulting from conservation of the system’s total
angular momentum. From any point O, Euler’s laws for a rigid
body state that ḢO = MO, where HO is the total angular
momentum about O, and MO is the net moment about O. For
short aerial behaviors in robots larger than a few grams, we
will assume that the external forces and torques (particularly
aerodynamic torques) are negligible so that MO = 0, and
hence total angular momentum about O is conserved.

The template’s angular momentum about the perpendicular
axis (E3) of its COM,

HO = (Ia + Id)θ̇b + Iaθ̇r, (3)

where HOE3 := HO and θ̇b and θ̇r are derivatives with
respect to time t. Normalizing by the total MOI, Ia + Id,
and solving for body angular velocity reveals that the tem-
plate kinematics are parametrized by a single dimensionless
constant ξ, the effectiveness of the IR template2,

θ̇b = H̃O − ξθ̇r, ξ :=
Ia

Ia + Id
, (4)

2Note that this quantity differs from that of [1], wherein effectiveness ε
was defined as the ratio of link velocities.
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where H̃O is the normalized system angular momentum.
Hence the angular velocity of the body can be decomposed
into two physically interesting components: a drift term influ-
enced solely by external impulses, and the velocity induced by
internal shape change that has been called the local connection
vector field [41] (hereafter connection field, although note that
in this transient setting there is no cyclic shape change). This
equation directly governs performance in two distinct tasks:
1) orientation regulation after an impulse, where the task is to
maintain a stable body angle (θ̇b = 0), with a relative velocity
θ̇r = H̃O/ξ; and 2) zero angular momentum reorientation
(HO = 0), where the task is to change the body orientation
to some angle θb,f in tf seconds, (1), given the constraint of
the connection field, θ̇b = −ξθ̇r.

In the latter case, body rotation is directly a function of
appendage rotation. Under the assumption that θ̇r is positive,

θ̇b =
dθb
dt

=
∂θb
∂θr

dθr
dt

= −ξθ̇r,
∂θb
∂θr

= −ξ, (5)

expressing the 1-dimensional connection field that reveals the
constant differential relationship between internal and external
rotation.3 For this template, the connection field is constant
and equal to −ξ. The body stroke is directly proportional to
appendage stroke, and hence a limit sr on the range of motion
of the appendage will limit the achievable body rotation.

B. Template Dynamics

A real terrestrial robot is constrained by the duration of
its aerial phase (fall, leap, or other dynamic behavior) and this
imposes a new set of requirements on the parameters that spec-
ify the actuation. This section characterizes the behavior of a
conventionally power-limited actuation scheme, and defines a
controller for that actuator.

1) Newtonian and Actuator Dynamics: As the template
consists of two rigid bodies pinned through their concentric
COMs, derivation of the equations of motion is trivial – the
angular acceleration of body and tail are opposite in sign and
equal to the motor torque normalized by each body’s MOI.
Since the tail angle is kinematically related to that of the body
by (5), we will simply consider the body dynamics,

θ̈b =
τ

Id
, (6)

where τ is the motor torque. The ratio of joint torque to
body angular acceleration is equal to the body’s MOI in the
template, Id, but is more complex in the anchors (coupling
appendage masses, etc.); to avoid confusion with the inertia
of the physical body segment in the anchor models, we will
call this ratio the “driven” inertia.

To capture the essential limitation of any powertrain in
a time-sensitive task – the rate at which it can change the
mechanical energy of the driven system – we augment the
template’s dynamics with a simple, piecewise-linear actuator
model in which torque falls linearly with increasing speed (we
extend this to allow for current limits in Appendix C). This
model is not only a good approximation of a DC motor [42],

3In the anchor models this relationship may be nonlinear or non-monotonic.

but is general enough to capture to first order the effort-flow
relationships of many other speed-dependent actuators includ-
ing biological muscles [43]. The maximum available actuator
torque depends on activation (terminal voltage, V = ±Vm, for
some maximum voltage Vm) and speed,

τ(V, θ̇r) =

{
sgn (V ) τm

(
1− |θ̇r|ωm

)
: V θ̇r < 0

sgn (V ) τm : V θ̇r ≥ 0
(7)

where τm is the stall torque and ωm is the no-load speed of
the motor after the gearbox (and hence the no-load speed of
the appendage relative to the body).

Since we seek to specify the entire powertrain, we find
it convenient to decouple the roles of the actuator and the
transmission by parametrization with respect to peak mechan-
ical power, P = τmωm/4, (whose product form cancels the
appearance of the gear ratio) and drivetrain no-load speed, ωm
(whose linear dependence upon the gear ratio makes it a useful
surrogate for the transmission). The required gear ratio of a
physical gearbox or other transmission is then the ratio of ωm
to the motor’s actual no-load speed.

2) Controller Design: Notwithstanding the voluminous lit-
erature on time optimal control in mechatronics and robotics
settings (e.g., along specified paths [44], and exposing actuator
dynamics [45]) we have not been able to find a formal
treatment of the robust minimum time problem for our simple
hybrid motor model (7). Therefore we will take the naı̈ve
approach and embrace a single switch open loop bang-bang
controller as offering the simplest and most paradigmatic
expression of “fast repositioning” for a (back-EMF perturbed)
double integrator [46]. We relax the bang-bang controller
assumption in Appendix B and in particular show that a
proportional-derivative (PD) feedback controller closely and
robustly approximates (and given high enough gains, con-
verges to) the open loop control policy. We further verify this
in the empirical results, Section V-B, which use a PD controller
to approximate the bang-bang controller.

The bang-bang control strategy makes a single switch be-
tween the acceleration and braking dynamics at a time ts, such
that the body comes to a halt at the desired final orientation
θb,f . 4 During the single-switch reorientation from θb = 0,
the body will accelerate from rest and brake to the final angle
θb = θb,f with no overshoot, with θ̇b ≥ 0 and θ̇r ≤ 0 for
the entire maneuver. Using (5), the torque can be rewritten
to eliminate the dependence on θr. The hybrid dynamics are
described by an acceleration phase and a braking phase,

θ̈b =


4P

ωmId

(
1− θ̇b

ξωm

)
, for 0 ≤ t < ts,

− 4P

ωmId
, for t ≥ ts.

(8)

3) Behavior in reorientation task: Based on this template
kinematics, dynamics, and controller structure, we now exam-
ine the resulting behavior of the system in this reorientation
task. First, note that due to local integrability of the non-
holonomic constraint, (5), the system has only a single degree

4This may be replaced by an event-based guard condition G(θb, θ̇b) = 0,
as derived in [40, Sec. II-A].
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of freedom after the initial conditions are chosen. We therefore
choose to define the initial conditions as θr = θb := 0, and
express the dynamics only in terms of θb. The system starts
at rest, so that θ̇b = 0. We can write the system behavior in
closed form by integrating the linear, switched dynamics in
(8) from this initial condition until the body again comes to a
halt at a time th. See [40, Sec. I] for details on this integration.
The halting time can be written as an explicit function of the
template parameters, (2),

th = gh(p) := ts +
Idξω

2
m

4P

(
1− exp

(
− 4P

Idξω2
m

ts

))
, (9)

along with the final angle, θb = θh,

θh = gθ(p) := ξωmts −
Idξ

2ω3
m

8P

(
1− exp

(
− 8P

Idξω2
m

ts

))
.

(10)

C. Dynamical Task Encoding

The physical relationships derived in the previous two
sections enable a straightforward representation of the task-
feasible parameter subset R containing all self-consistent
parameter sets. This restricted set can be written as a system
of constraints to facilitate the two design problems identified
at the beginning of this section: P1 Body Selection, in which
the task specification (tf and θb,f ) is fixed at the outset and
R prescribes the corresponding feasible body designs, and
P2 Performance Evaluation, where the achievable task set is
identified, given a fixed body design (values of ξ, Id, P , ωm,
sr, and ts).

The first constraint arises from the kinematic relation, (5),
and ensures that the rotation by the task, θb,f falls within any
physical constraints on rotation. If the design has a finite range
of motion sr (so that θr ∈ [0, sr]), then any design meeting
the task specification (1) must satisfy,

ξsr ≥ θb,f ; (11)

obviously bodies with unlimited range of motion satisfy this
constraint trivially. The second constraint ensures that the
halting time, (9), falls within the task completion time, tf .
The third constraint ensures that the body, under the bang-
bang controller (parametrized by ts), (10), stops at the correct
angle. Taken together, these constraints define R,

R :=
{
p ∈ P

∣∣∣ ξsr ≥ θb,f , tf ≥ gh(p), θb,f = gθ(p)
}
. (12)

For the Body Selection problem, P1, any design, p ∈ R,
satisfying these constraints is “task-worthy” in that its physical
and controller parameters satisfy its task specification. The
Performance Evaluation problem, P2, is also easily specified
using this representation: fixing all parameters save tf and θb,f
specifies a two-dimensional subspace of achievable tasks (see
Fig. 6 for a graphical example).5

Unfortunately, R still leaves many degrees of freedom for
task-worthy designs for the Body Selection design problem. In
the remainder of this section, we show that the gearing and

5The largest task set will be found by allowing the switching time to vary
with the task (i.e., using the third constraint in (12) to select ts for each θb,f .)

control parameters (ωm and ts, respectively) can be eliminated
through optimization, thereby enabling a more compact and
considerably more prescriptive set.

1) Spatiotemporally-normalized template behavior: The
isolation of the effect of gearing and control on R is compli-
cated by their nonlinear interaction with the other dimensioned
parameters in p. To remove the effect of scale and expose these
relationships, we will nondimensionalize the equations (9)
and (10), seeking a spatiotemporal rescaling6 parametrized by
γ, such that,

t̃s = γts; t̃f = γtf ; t̃h = γth; θ̃h =
θh
θb,f

. (13)

where the ·̃ indicates dimensionless values. We find that
choosing,

γ :=

(
4Pξ

Idθ2b,f

) 1
3

, (14)

enables a particularly convenient reduction of gh and gθ, (9)–
(10), written as a function of only two normalized parameters,

t̃h = g̃h(ω̃m, t̃s) := t̃s + ω̃2
m

(
1− exp

(
−t̃s
ω̃2
m

))
(15)

θ̃h = g̃θ(ω̃m, t̃s) := ω̃mt̃s −
ω̃3
m

2

(
1− exp

(
−2t̃s
ω̃2
m

))
, (16)

where ω̃m is a dimensionless actuator parameter that stands
as a proxy for gearing,

ω̃m :=
ξωm
γθb,f

. (17)

In the rescaled coordinates, the reorientation task requires
that the system halt at θ̃h = 1, constraining the normalized
parameters to one degree of freedom. This freedom can be
parametrized by ω̃m through the implicit function specifying
the “critical” switching time t̃c, satisfying g̃θ(t̃s, w̃m) = 1 for
a given choice of no-load speed,

t̃c = g̃c(ω̃m) := inf{t̃s > 0 | g̃θ(t̃s, ω̃m) = 1}. (18)

When the other system parameters are chosen, the designer
can choose the controller that completes the task by setting

ts = γg̃c

(
ξωm
γθb,f

)
, (19)

automatically satisfying (and therefore obviating the need for)
the third constraint in (12). With this choice, the scaled halting
time depends only on the scaled no-load speed,

t̃h = g̃h(ω̃m, g̃c(ω̃m)). (20)

The second constraint in (12) can now be written in a more
useful form. The temporal demands of the task require that full
template parameters, (2), be chosen so that the spatiotemporal
rescaling meets the task specification. In particular, the value

6This rescaling can also be seen as a nondimensionalization of the tem-
plate dynamics resulting in a normalized hybrid system that simplifies the
integration of the dynamics; see [40, Sec. I].
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of γ, (14) (chosen through the selection of physical param-
eters) must ensure that the physical halting time meets the
constraint,

tf ≥ th =
1

γ
t̃h =

1

γ
g̃h(ω̃m, g̃c(ω̃m)). (21)

Substituting the definition of γ and rearranging terms yields
a more compact version of the time constraint in (12), predi-
cated on critical switching time,

ξP

Id
≥ kp

θ2b,f
t3f

, (22)

where kp is a function of dimensionless gear ratio defined as,

kp :=
1

4
g̃3h

(
ξωm
γθb,f

, g̃c

(
ξωm
γθb,f

))
. (23)

For a fixed task specification with a given inertia, power and
effectiveness trade off directly. The value of kp increases the
requirements on P and ξ, and thus kp may be considered a
performance “cost” imposed by suboptimal gearing. We will
consider this cost when selecting an actuator design for RHex
in Section V.

2) Optimal Control and Gearing for the Template: The
gearing that maximizes performance in the critically-switched
task minimizes kp, or equivalently, the dimensionless comple-
tion time th,

minimize
ω̃m

t̃h = g̃h(ω̃m, g̃c(ω̃m)). (24)

This problem has a (numerically determined) unique global
minimum at,

ω̃∗m ≈ 0.74, (25)

corresponding to a minimal final dimensionless time, t̃∗h :=
g̃h(g̃c(ω̃

∗
m), ω̃∗m) ≈ 2.14 (Fig. 3, top). With this optimal ω̃∗m we

can find the minimal k∗p := g̃3h(ω̃∗m, g̃c(ω̃
∗
m))/4 ≈ 2.46, corre-

sponding to the minimal power requirement for (22). Similarly,
the critical switching time at this optimum, (18), is a constant
k∗t := g̃c(ω

∗
m) ≈ 1.62. Finally, the optimal dimensioned no-

load speed, ωm, can be found from equations (21) and (17),
ωm = ksθb,f/ξtf , for ks := ω̃m g̃h(ω̃m, g̃c(ω̃m)) (where with
these optimal values, k∗s ≈ 1.58).

This optimal bang-bang control can be expressed via the
ratio t̃s/t̃h (Fig. 3, bottom); the optimized maneuver consists
of full positive voltage for 76% of the total time, followed by
full negative voltage until the body comes to a halt (Fig. 4).

The designer seeking the optimally-geared body for a
critically-switched reorientation task can then consider a re-
finement toR, (12), that explicitly slaves two of the parameters
(ωm and ts) to the others,

R∗ :=
{
p ∈ P

∣∣∣ ξsr ≥ θb,f , ξP

Id
≥
k∗pθ

2
b,f

t3f
, (26)

ωm = k∗s
θb,f
ξtf

, ts = k∗t

(
4Pξ

Idθ2b,f

) 1
3 }

.
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Fig. 3. Dimensionless system dynamics. Final time is globally minimized
by ω̃m ≈ 0.74 (top). Bang-bang control depends on ω̃m; at minimum final
time, voltage switches at ≈ 76% of final time.

D. Summary of template design freedom

The solution of the template’s kinematics and dynamics
enabled two representations of the task-feasible subset of
design parameters, each serving a particular role in the two
design problems specified at the beginning of this section.
Starting with a fixed task specification (ts and θb,f ), the Body
Selection problem, P1, can be summarized as a choice of
the body parameters (ξ, Id, sr, and P ) subject to the set
constraint R∗, (26), with the control and gearing (ωm and
ts) selected optimally based on this design. Alternatively,
given an existing (or putative) design, the set R, (12), can be
used in a Performance Evaluation problem, P2, specifying the
achievable tasks. In this latter case, the “cost” of suboptimality
can be computed using kp, (23), or by finding an empirical kp
by substituting the template parameters into (22).7

III. ANCHORING VIA MORPHOLOGICAL REDUCTION

The concentrically-pinned appendage of the template is not
likely to exactly model practical physical designs, raising the
question of how the template parametrization relates to real
bodies available to a robot designer. We now explore how the
task-feasible restriction on template parameters, R in (12) (or
with optimized gearing and switching time, R∗ in (26)) is
reflected in the physical parameters (length, mass, and inertia)
of bodies a designer might select for inertial reorientation. A
particular template instantiation, p ∈ P could be embodied in
myriad ways. This paper considers three categories of physical
IR morphologies that have appeared in the literature: tails,
radially-symmetric reaction wheels, and coordinated flailing
limbs, with respective design spaces, Pt, Pw, and P`. While
the physical parameters and dynamics for these systems differ
considerably, they all share the same configuration space and

7A submaximal limit on torque, or suboptimal controllers like the PD
scheme discussed earlier, also manifest as an increase in kp.
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TABLE II
MORPHOLOGICAL REDUCTIONS FOR THREE CANDIDATE ANCHORING BODIES

Attribute Tail Reaction wheel Limbs

Inertial Effectiveness, Ξi,ξ
It+mrl

2
t

It+Ib+mr(l
2
t+l

2
b
)

Iw
Iw+Ib+mrl

2
b

N(It+mkl
2
t )

Ib+mt

N∑
i=1

`2i+N(It+mkl
2
t )

Driven Inertia, Ξi,Id (Ib +mrl2b)(1− 2η
π

) Ib +mrl2b Ib +mt
N∑
i=1

`2i

Anchoring accuracy9 Approximate Exact Exact

B
od

y
an

gl
e

(θ
b
/θ
b
,f

)

Time ratio (t/th)
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)
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Fig. 4. System kinematics (top). Bang-bang control for optimal gearing
(bottom) selects maximal forward input (dashed line) for 76% of final time,
then switches to full reverse; actual torque (solid line) is limited by back-EMF
during acceleration (blue) and current during braking (red).

(scalar) control input space.8 Therefore the state and input
spaces can be mapped from template to anchor trivially, and
we focus our attention on the problem of the parameter spaces.
In this section, we show that these bodies can be put into
formal correspondence with the template task representation
by the introduction of a mapping from these spaces to that of
the template,

Ξi : Pi → P, (27)

for i ∈ {t, w, `}, hereafter termed a morphological reduction.
The morphological reduction affords designers of these

bodies the same insight achieved for templates. The “pullback”
of the feasible set of body and task parameters through these
maps yields an anchoring design in the sense of guaranteeing
task achievement over the entire inverse image,

pi ∈ Ri := Ξ−1i (R) ⊂ Pi, (28)

(or similarly, R∗i := Ξ−1i (R∗)), The Body Selection and
Performance Evaluation problems of the previous section can
be expressed in the anchor’s task-feasible space Ri by fixing
either the task parameters or body parameters, respectively. We

8The limbed body is, of course, intrinsically possessed of higher DOF. Here
we consider only the case where a coordinating controller has rendered its
input and state spaces identical to the template. See Appendix A for a full
treatment of this anchoring.

will employ both methods to explore reorientation morphology
on RHex in Section V.

The kinematics and dynamics of anchors may deviate from
that of the template, introducing nonlinearities and configura-
tion dependence into the relationships corresponding to those
derived in Section II. For these systems, the morphological
reduction is an approximation, with error that varies with task
specification and morphology.9

For the physical bodies discussed in this manuscript, the
parameters defining the powertrain (P , ωm, sr), control (ts),
and task (tf , θb,f ) have direct correspondences in both the
template and anchor design spaces, and thus those components
of Ξ are simply the identity map and we use the same notation
to describe these quantities in both template and anchor.
However, equivalent parameters for effectiveness and inertia
are not obvious a priori and therefore are the focus of the
following sections (as summarized in Table II and Fig. 2). As
shorthand for these non-trivial components of Ξ we use Ξi,ξ
and Ξi,Id to denote the canonical projection of Ξi onto ξ and
Id, respectively.

A. Tailed Morphological Reduction

Within this manuscript, we refer to any single mass-offset
appendage specialized for inertial reorientation as a “tail” (in
contrast to flywheels and limbs, described below), though this
configuration could also represent a two-segment body with
an actuated spine [11, 47]. As in the template, the tailed
system consists of two rigid bodies and one internal degree
of freedom, but in this case the mass centers of the bodies are
offset from the joint by some distance (lb and lt, for body and
tail, respectively), and the derivation of the connection field is
considerably more involved. The full parameter set for a tailed
body motion is,

pt := [mb, Ib, lb,mt, It, lt, sr, P, ωm, ts, θb,f , tf ], (29)

that is, mass, inertia, and COM distance from pivot for each
of body and tail (Fig. 2), as well as the appendage stroke,
actuator power, no-load speed, controller switching time, and
task specification.

1) Tailed Body Kinematics: The magnitude of the an-
gular momentum about the system COM is nonlinearly
configuration-dependent (see [40, Sec. III] for full derivation),

HO,t = (Ib + It +mr(l
2
b + l2t − 2lblt cos θr))θ̇b (30)

+ (It +mr(l
2
t − lblt cos θr))θ̇r,

9As shown in this section, the tail anchoring is exact when lb = 0, the
wheel anchoring is always exact, and the limb anchoring is exact only for the
symmetry conditions described in Section III-C.
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where,

mr :=
mbmt

(mb +mt)
(31)

is known as the reduced mass. As in (4), normalize the angular
momentum by the total MOI10 about the COM, Ib + It +
mr(l

2
t + l2b), and define two dimensionless parameters – an

equivalent effectiveness,

ξt :=
It +mrl

2
t

It + Ib +mr(l2t + l2b)
, (32)

and a nonlinearity parameter,

η :=
mrlblt

It +mrl2t
. (33)

The normalized angular momentum is thus,

H̃O,t = (1− 2ξtη cos θr)θ̇b + ξt(1− η cos θr)θ̇r. (34)

The second dimensionless constant, η, captures the extent
to which the system deviates from the linear behavior of
the template. Only a subset of the dimensionless parameter
space is physically realizable because of coupling between the
dimensionless constants and the requirement of non-negativity
of the dimensioned parameters (see [40, Sec. III-A]). The
unreachable region is shaded gray in Fig. 5.

As in (5), setting H̃O,t = 0 and applying the chain rule
yields the connection field for the tail anchor,

∂θb
∂θr

(θr) = −ξt
1− η cos θr

1− 2ξtη cos θr
. (35)

Note that ∂θb/∂θr = −ξt = const when η = 0 or when ξt =
0.5, and note that the denominator is nonzero when 2ξtη <
1, which is always true for physically-realizable parameters
(again, see [40, Sec. III-A]). When η > 1, the sign of the
connection may change over the tail’s range of motion so that
transiently both tail and body rotate in the same direction.

Note that the kinematics are completely described by the
connection field, and so two systems with the same ξt and η
have equal rotations of the body for any given tail rotation.
Thus tradeoffs in the physical parameters (mb, Ib, lb,mt, It, lt)
that leave the dimensionless parameters (ξt, η) unchanged have
no effect on the kinematics of the system. In terms of the
physical parameters of a robot and tail, this 1-dimensional
connection field is,

∂θb
∂θr

(θr) = − It +mr(l
2
t − lblt cos θr)

Ib + It +mr(l2t + l2b − 2lblt cos θr)
. (36)

This quantity is at most unity (when the tail is infinitely long
or heavy), and varies over both the configuration space of the
robot and its design space.

For tails pivoting directly at the body COM, lb = 0, the
nonlinear terms vanish as η = 0, and the tail anchors to
the template without error via equivalent effectiveness ξt. In
general, the connection is not constant and the anchoring is
approximate; this can be accomplished in a number of ways.
The simplest approach (used for the rest of this paper) is

10The total MOI for a general tail is configuration-dependent; we take the
MOI at θr = ±90◦ to achieve the compact form presented here.

to assume negligible effect of nonlinearity, i.e. η ≈ 0, and
simply choose Ξt,ξ(pt) := ξt as in the body-centered case.
This choice of (approximate) morphological reduction is not
unique, and may not be the most accurate in all situations,
but it works well for all tailed robots described in Table IV.
One alternative is to assume a small range of motion and
evaluate the connection field at an intermediate value, such as
Ξt,ξ(pt) = ∂θb/∂θr(180◦) = ξt(1 + η)/(1 + 2ξtη). The most
accurate approximation for large tail swings is the average
value over the full tail stroke (which can be found by integra-
tion of the connection field as shown in [40, Sec. III-B]). This
can be found in closed form but the equation’s complexity
makes it cumbersome as a design tool, though useful for
calculating or reducing error for a finalized design.

The relative error in body rotation over a sweep of the tail
due to this approximation is plotted in Fig. 5a as,

ec(ξt, η) :=
θb,f − ξtsr

θb,f
, (37)

where the exact final body orientation is found by integrating
the connection (36) over the tail sweep; an analytic expression
for this function is derived in [40, Sec. III-B]. For robots with
η ≈ 0 or with ξt ≈ 0.5, the error of this approximation is
essentially negligible (less than 1% for RHex or Tailbot).

2) Tailed Body Dynamics: Defining for clarity the absolute
tail angle, θt = θb + θr, and using the balance of angular
momentum about the COM of each body, the equations of
motion for the full nonlinear tailed system are (see [40,
Sec. IV]),

M(θr)

[
θ̈b
θ̈t

]
+

[
mrlblt sin θr θ̇

2
t

−mrlblt sin θr θ̇
2
b

]
=

[
1
−1

]
τ, (38)

with an inertia tensor,

M(θr) =

[
Ib +mrl

2
b −mrlblt cos θr

−mrlblt cos θr It +mrl
2
t

]
(39)

= (Ib +mrl
2
b )

ξt
1− ξt

[ 1−ξt
ξt

−η cos θr
−η cos θr 1

]
.

Inverting the inertia tensor yields an expression of the tailed
body dynamics that, unlike the template (6), is both nonlinear
and state-dependent,

θ̈b =
τ

Id,t(θr)
− Co(θr, θ̇b, θ̇t), (40)

where Co is the Coriolis acceleration, and we define (by
analogy to the template’s driven inertia), the configuration-
dependent inertia, Id,t,

Id,t(θr) =
(It +mrl

2
t )(Ib +mrl

2
b)− (mrlblt cos θr)

2

It +mrl2t −mrlblt cos θr
(41)

= (Ib +mrl
2
b)

1− η2ξt
1−ξt cos2 θr

1− η cos θr
. (42)

In general, the Coriolis terms are negligible for tailed
systems with small η, and the anchoring can be accomplished
with a constant (average) approximation of the driven inertia.
In the simplest case of body-centered tails (i.e. lb = 0, η = 0),
Id,t reduces to Ib exactly and the Coriolis terms drop out,
allowing the choice of Ξt,Id(pt) := Ib.
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Most of the tails considered in Table IV have ξt ≈ 0.5, and
so for these tails consider Id,0.5 := Id,t|ξ=0.5, which reduces
exactly to,

Id,0.5(θr) = (Ib +mrl
2
b)(1 + η cos θr). (43)

Integrating this function over a half tail sweep, θr ∈ [90◦ 270◦]
(approximating the range of motion of many tails in Table IV),
yields the best approximation for these bodies,

Ī∗d,0.5 := (Ib +mrl
2
b)(1−

2η

π
). (44)

In this paper we choose this as our morphological reduction
for the driven inertia, i.e., Ξt,Id(pt) := Ī∗d,0.5, although other
choices may work better for some systems. For each of the
tailed systems surveyed in this paper the average deviation
from (42) is less than 15% over their actual tail range of
motion; for RHex the error is less than 2.5%.

3) Final error due to approximate morphological reduc-
tion: Using the template relations to constrain the power
required to meet the righting task is subject to error from
three sources: variation in the connection vector field, the
changing inertia tensor, and the Coriolis accelerations. This
total error can be quantified over the tail design space (ξt,
η) for a particular body/tail rotation task by applying the
nondimensionalization, (13), to the nonlinear dynamics11 and
numerically integrating the resulting system (derived in [40,
Sec. IV-A]), with the optimal values of no-load speed and
switching time from the template, until the body comes to
rest at a time t̃n. Defining the final body error,

eb(ξt, η) := θ̃(t̃n)− 1 (45)

and final time error,

et(ξt, η) :=
t̃n − t̃∗f
t̃∗f

, (46)

11This step isolates the effect of tail-specific geometry (ξt, η) from the
remaining parameters, so that error can be quantified with respect to tail
parameters alone.

which are plotted in Fig. 5b–c for a half sweep of the tail
centered around θr = 180◦. Final error for this maneuver
is less than 10% across the large swath of parameter space
containing the examples found in the literature thus far; in
particular, time and angle error fall within 2% for RHex and
within 4% for Tailbot.

B. Wheeled Morphological Reduction

A reaction wheel is a radially symmetric inertial appendage
with mass centered at its joint, and can be seen as a special
case of a tail, with lt = 0; the appendage is simply a rigid
body with inertia Iw mounted a distance lb from the body’s
COM (Fig. 2). The parameter set for a reaction wheeled body
is,

pw := [mb, Ib, lb,mw, Iw, sr, P, ωm, ts, θb,f , tf ], (47)

where in general the wheel stroke, sr, is infinite.
The connection field (and thus equivalent tail effectiveness)

follows from (36),

∂θb
∂θr

= − Iw
Iw + Ib +mrl2b

:= −ξw. (48)

Here the vector field is a configuration-independent constant,
as in the template, and so the anchoring is exact. The dynamics
are found simply by setting lt = 0 in (38) and (39); the
nonlinear terms disappear and the dynamics become linear
with driven inertia,

Id,w = Ib +mrl
2
b . (49)

The non-identity components of the morphological reduction
are thus chosen from (48) and (49), as listed in Table II.

C. Limbed Morphological Reduction

Unlike the tail and reaction wheel anchors, whose kinemat-
ics’ were more complex than the template’s and consisted of
a greater number of physical parameters but still represented a
single degree of freedom, an anchor model of a collection of
limbs is truly a higher DOF mechanism. The general problem
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of finding “gaits” in this larger shape space that extremize
body rotation has been explored in [41]; here we consider
the simpler cases that arise when the limbs are coordinated
such that the effective shape space is one dimensional. The
resulting kinematics lie on a submanifold of the configuration
space and, as we show, are equivalent to the kinematics
of the simpler template model. Hence the “anchoring” is
accomplished through the active, closed loop control that
coordinates the limbs.

In general, the effectiveness of an assemblage of limbs
varies over their configuration space, even when coordinated.
However, two interesting cases arise under certain conditions
when all appendages are actively controlled to be parallel,
that is each leg’s relative angle is commanded to be either
θi = θr or θi = θr + 180◦, for some common θr. Given
N limbs arranged with pivots in a line coincident with the
body’s COM (typically the centerline of the robot’s body),
a sufficient condition12 for configuration-independence of the
connection field is that the limbs are identical (each with mass
mt, length lt, and MOI It), and that the pivot locations are
symmetric across the body COM (as with the limbs of RHex,
for example). Let mtot := mb + Nmt represent the total
system mass, and `i the distance from body COM to the ith
pivot location (generalizing the tail anchor’s pivot offset lb).
The expression of the total angular momentum (derived in [40,
Sec. V]), reduces considerably in two illuminating examples,
depending on the phasing of the limbs (represented here by
si = ±1, with s negative for legs out of phase with θr by
180◦). The full parameter set for an N-limbed system with
the symmetry condition above is,

p` := [mb, Ib, `1, s1, ..., `N ,sN , lt,mt, It, (50)
sr, P, ωm, ts, θb,f , tf ],

where here we assume for simplicity the limbs share the same
range of motion sr, and the power P is taken to be the sum
across all limbs.

RHex has six identical legs arranged in symmetric pairs
of pivots along the centerline of the body; that is, N = 6,
`1 = −`3, `2 = 0, and all legs have equal mass mt and
length lt. The pairs of legs are driven in anti-phase to generate
an alternating tripod gait when walking or running, a condition
that could be modeled here by taking si negative for odd i and
positive otherwise, so that

∑6
i=1 si = 0. In the anti-phase case,

the angular momentum reduces to,

HO,l =(Ip +N(It +mtl
2
t ))θ̇b +N(It +mtl

2
t )θ̇r, (51)

where Ip = Ib + mt

N∑
i=1

`2i . When all legs are in phase,∑6
i=1 si = N and the angular momentum is,

HO,l =(Ip +N(It +mrtl
2
t ))θ̇b +N(It +mrtl

2
t )θ̇r, (52)

with the subtle difference being the adjusted mass mrt :=
mbmt/mtot, a generalization of mr. In either case, the con-
nection field is constant, and thus the equivalent template

12The necessary condition is considerably more general, see [40, Sec. V]
for details.

effectiveness is error-free,

Ξ`,ξ(p`) := ξ` =
N(It +mkl

2
t )

Ib +mt

N∑
i=1

`2i +N(It +mkl2t )

, (53)

where mk = mt when leg pairs are out of phase, and mk =
mrt when legs are in phase. Since mt > mrt, anti-phase leg
swings are more effective than in-phase swings, as explored
further in Section IV-B.

The multi-body dynamics of a robot with several phased
appendages are considerably more complex than the develop-
ments of the previous sections, and should be derived carefully
for any particular case of interest. Here we merely suggest a
naı̈ve mapping based on the rotating inertia as expressed in
the symmetric cases outlined in Section III-C:

Ξ`,Id(p`) := Id,` = Ib +mt

N∑
i=1

`2i , (54)

mapping the total input power across all limbs to the template.

IV. COMPARATIVE MORPHOLOGY AND SCALING

Each of the diverse IR bodies of the previous section can
accomplish the given task, raising the question of how mor-
phology shapes the available design choices. The differences
can be expressed and compared directly through each system’s
morphological reduction, as summarized in Table II. In this
section we examine the consequences of those anchoring
relations and explore the implications for inertial reorientation
at sizes large and small.

A. Examples from the literature

To facilitate our comparative approach, we present examples
of IR machines from the literature in Tables III & IV (compiled
using the references shown and personal communications13).
As an interesting contrast to the mobile robots that are the
focus of this paper, we included another notable example
of terrestrial dynamic IR – a small, off-road motorcycle
(“dirt bike”), as skilled riders are known to modulate the
acceleration of the rear wheel to control orientation during
leaps and tricks [16]. Most use morphology designed specially
for IR, but three machines (the two legged examples, and
the motorcycle) feature appendages designed for terrestrial
locomotion that can be co-opted for aerial IR. The mass range
covered by the examples is surprisingly large – over 300 fold
among the tailed robots, and over three orders of magnitude in
all. This is not a comprehensive list of all robots harnessing
inertial forces; notably, we have omitted devices where the
tail moves in a plane far from the body COM, as in [7].
However, the diversity of the chosen machines provides both
a verification of the efficacy of the templates and anchors
design approach (noting the low final error for all machines)
and enables some useful comparisons, as discussed in the
following subsections.

13Values differing from those in the cited references are more up-to-date
or accurate.
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B. Selection of morphology for inertial reorientation

When is it appropriate to add a new appendage to a limbed
body; and when is it better to assign the inertial appendage role
to a tail rather than a reaction wheel? In short, tails provide the
most reasonable path to high values of effectiveness (ξ ≈ 0.5
or higher), and are thus well suited to aggressive, dynamic
maneuvers, while reaction wheels provide infinite stroke over
longer time scales. Limbs may provide a middle ground,
varying considerably in morphology across extant robots, and
thus in effectiveness, and may provide some IR capability
without any additional payload.

1) Wheeled vs. Tailed Bodies: The symmetric mass of
a reaction wheel provides the advantage of simple, linear
dynamics and infinite range of motion. Of course, large wheels
become cumbersome more quickly than a tail – a practical
reaction wheel could be no larger in diameter than a robot
body’s smallest dimension. In natural systems, tails greater
than body length are common, and thus we can expect larger
effectiveness from tails than from reaction wheels. For ex-
ample, between the comparably-sized Hexbug [5] and TaYL-
RoACH [4] (the former employing a pivot-centered double tail
mass which acts like a wheel, and the latter an offset tail), the
tailed design achieves roughly 15% higher effectiveness (0.44
vs 0.38) with 20% lower appendage mass (4g vs 5g, Tables IV
& III).

Since wheels and limbs need not incur the constrained range
of motion suffered by practical 1-DOF tails,14 their effective-
ness seems less important (i.e. it does not intrinsically limit
body rotation) – so why bother with a relatively bulky tail?
The answer is revealed though the power equation, (22), and
its inverse dependence on tail effectiveness. For a given task,
a doubling of ξ reduces the power requirement by half. Herein
lies the fundamental limitation of low-effectiveness devices for
fast reorientation: a small flywheel will require much more
power than a relatively long tail for the same maneuver. The
short time scales available for aerial reorientation in terrestrial
robots suggest a limited role for internal reaction wheels, but
when this constraint is lifted (e.g. in space robotics [48]), such
devices should be ideal. The motorcycle example in Table III
provides an instructive exception – its IR “appendage” is
driven by the machine’s locomotive powertrain, resulting in
the largest body mass-specific power (over 300 W/kg) of
any example here, enabling impressive aerial maneuverability
in the right hands. When retrofitting an IR appendage to an
existing machine, the lower power requirements of a tailed
design should lead to generally lower added mass than a less
effective wheel. For tails and wheels of comparable length
scale, the advantage goes to the wheel due to the subtle effect
of the reduced mass – the offset tail pulls the system COM
towards the tail as appendage mass increases, thus decreasing
effectiveness (mr in ξt is strictly smaller than mt).

2) Limbed vs. Tailed Bodies: For a given total added mass,
a single appendage (tail) will generally provide larger effec-
tiveness than two or more appendages. The squared depen-
dence of effectiveness on length makes elongate appendages

14More complex tails can escape this limitation in some maneuvers, e.g.
the conical tail motion generating roll in the falling gecko [18].

most attractive; hence, dividing a tail into two limbs each
with half the length and mass of the original appendage
would entail a significant loss of performance (a pair of
symmetric flywheels sees a similar disadvantage). On the other
hand, in many cases (for example RHex), limbs also provide
infinite stroke, can exceed body dimensions without negative
consequences (unlike a reaction wheel), and will by definition
be already present on a legged terrestrial robot, eliminating
any added cost or complexity. Machines with relatively long
limbs will likely benefit most from this strategy (the quadruped
Cheetah Cub achieves almost three times the IR effectiveness
of RHex with a third fewer limbs, see Table III). However,
the use of these appendages for aerial reorientation may pose
significant drawbacks, most notably a constraint on their final
orientation upon landing (touching down feet-first is typically
desirable). Explicit design for reorientation will likely also
conflict with other limb design priorities (for example, distal
mass is typically a disadvantage when interacting impulsively
with a substrate or when retracting the limb during the swing
phase [49]). Still, in many cases even a limb designed for
running may result in enough inertial effectiveness to be useful
in small (but significant) rotations. We will test this hypothesis
in Section V-B.

3) Core vs. Appendage Actuation: A tailed body and an
actuated spine [11, 47] can both be represented by the same
anchor model, but represent very different design propositions.
The primary advantage of a spine is that it may preserve the
overall morphology (in particular volume and body envelope)
by essentially separating the body into two chunks with much
lower MOIs (with ξt ≈ 0.5 if the segments are similar).
Meanwhile, an added tail will in general extend the body
envelope. The major drawback of body-bending (as with using
limbs for inertial reorientation) is that the final orientation of
both segments is important if the legs of the robot are to hit
the ground simultaneously [47] – as we show in Section V-B,
increasing the number of contact limbs when landing can
greatly increase survivability. Furthermore, existing robotic
platforms (like RHex) cannot be substantially altered without
a major redesign, but their distal appendages may be relatively
easy to add, subtract, or change. The core actuation approach
may have increased advantages outside the planar scope of
this paper; compare for example roll maneuvers in the falling
cat [15] against those of the falling gecko [19].

4) Maximizing tail performance: Intuitively, tail effective-
ness increases with tail mass, length and inertia, and decreases
with the corresponding body parameters. Minimizing tail
offset (placing the joint close to the body COM) has the dual
benefits of increasing performance and reducing nonlinearity
(the MSU jumping robot [3] comes closest to this ideal,
while Tailbot could increase effectiveness by 10% by centering
its tail at the body’s COM). Concentrating tail mass at the
appendage’s extreme produces the most effectiveness per unit
tail length (recall lt is the distance from pivot to tail COM,
which if It 6= 0 is strictly less than the total tail length),
and thus an idealized tailed body consists of a point-mass
tail pinned at the body’s COM. Less intuitive is the trade-off
between tail mass and length; clearly a given effectiveness
can be accomplished with any number of combinations of
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each, though increasing tail mass eventually sees diminishing
returns due to the effect of the reduced mass (31). By contrast,
increasing tail length quadratically increases effectiveness.
RHex’s relatively long tail achieves 75% higher effectiveness
than that of the Kangaroo robot with approximately the same
fraction of overall mass dedicated to appendage. At what
point a tail’s length becomes cumbersome is surely dependent
on the constraints of other tasks and varies widely between
applications, but the examples of Table III see tail lengths
commonly exceeding one body length.

C. Scaling of Inertial Reorientation
Agile mobile robots span an increasingly large size range,

raising the question of whether inertial reorientation remains a
practicable strategy for robots large and small. In the next sec-
tion, we design a tail for RHex with a task specification based
on the righting performance of Tailbot, a robot approximately
one fiftieth of RHex’s mass. How will this mass difference
dictate changes in morphology or mass-specific motor power?
Because ξ is dimensionless and dependent only on morphol-
ogy, isometrically [50] scaled robots are kinematically similar
– for a given appendage rotation, the body rotation will be
identical at any size scale. However, the power required for a
maneuver will vary with size.

Consider a robot isometrically scaled by a length L. Assum-
ing uniform density, the robot’s mass will scale by L3 and its
inertia by L5. If the robot were required to reorient through
the same angle in the same time regardless of size, then by
substitution into (22), (replacing Id with L5 and dividing both
sides of the inequality by L3) we would require power per unit
robot mass (power density of the whole machine) Pd ∝ L2.
However, because gravity is constant, g, a larger robot will
fall slower relative to its length (i.e. dynamic similarity [51]).
For a free fall distance of h ∝ L, the time available is
tf =

√
2h/g ∝ L1/2. Therefore, from (22), the required

power per unit robot mass,

Pd ∝
Id
mt3f

∝ L5

L3L3/2
= L1/2, (55)

scales as the square root of length. This indicates that inertial
reorientation gets mildly more expensive at large size scales;
larger robots may suffer reduced performance, or must ded-
icate a growing portion of total body mass to tail actuation
(or, noting the inverse relationship with ξ, to increased tail ef-
fectiveness). However, RHex and Tailbot span a characteristic
length range of almost four fold without dramatic differences
in ability (see Fig. 7); in fact, the smaller machine dedicates
more body mass to its tail motor than RHex (6.9% vs. 3.3%),
even as the larger machine has relatively higher body inertia
(an isometrically-scaled Tailbot of RHex’s mass would have
Ib = .11 kgm2, almost 30% lower than RHex). In this case,
differences in actuator performance trump scaling – Tailbot
uses a low-quality brushed motor, while RHex’s higher quality
components, [11], allow it to escape the penalty of size.

Intriguingly, generalization of the IR template dynamics
suggests that (55) may govern scaling of other power-limited
self-manipulation tasks, including aspects of legged locomo-
tion. Consider a robot with its feet planted firmly on the

TABLE III
COMPARISON OF PHYSICAL PROPERTIES FOR LIMBED OR WHEELED

SYSTEMS WITH THE CAPABILITY FOR AERIAL REORIENTATION. UNLIKE
THE TAILED EXAMPLES, THESE MACHINES ANCHOR WITHOUT ERROR.

Attribute RHex Cub Hexbug Dirt bike

Citation [26] [5] [16]
Number in error figure 12 11 9 10
Appendage Type Limbs Limbs Wheel Wheel
Body length (cm),L 57 21 5 140
Body mass (g), mb 7500 1300 40 105×103

App. mass (g), mt 63 52 5 10×103

App. offset (cm), lb, `i 25, 0, 25 10, 10 2.5 70
App. length (cm), lt 10 6.3 0 0
Body inertia (kgm2), Ib 0.15 9.8×10-3 17×10-6 20
App. inertia (kgm2), It 0.46×10-3 0.14×10-3 12×10-6 0.4

Effectiveness, ξ`, ξw 0.037 0.096 0.38 0.016
Driven inertia (kgm2), Id 0.17 0.012 19×10-6 24
Peak motor power (W) 2052 23.3 0.34 33×103

Range of motion, sr 360◦ 180◦ 360◦ 360◦

App. speed (RPM), ωm 434 77 916 1200

ground, rotating its body in the yaw plane about an actuated
hip. This situation could be modeled by a single rigid body,
connected to the ground by a motor – that is, the system
can be modeled by the IR template, considering the ground
to be the “appendage”, with Ia infinitely large and ξ = 1.
Power for reorientation for this grounded reorientation task
scales as in (55).15 In this simplified scenario, power-limited
reorientation scales identically whether the body rotation is
driven by inertial or ground reaction forces; we therefore
hypothesize that inertial appendages may enhance agility at
any size scale permitting legged maneuverability.

V. DESIGN FOR INERTIAL REORIENTATION

In this section, we present examples of the complementary
design problems of Body Selection and Performance Evalu-
ation (introduced in Section II) by exploring IR morphology
for RHex. The first step in the Body Selection problem, P1,
is to specify the task or set of tasks required of the machine
(i.e. parametrizing (1)); the task and other (external) concerns
will determine the overall morphology, subject to the trade-offs
discussed in the previous section. With a body plan chosen, the
designer is then free to pick any set of physical parameters in
Ri that best meets performance needs outside the reorientation
task. A naı̈vely rational design approach might introduce a cost
function, C(pi), expressing the impact of the IR morphol-
ogy on some other critical task (e.g. legged locomotion) or
penalty (e.g. parts cost) and solve the resulting constrained
minimization task. However, it is notoriously difficult to
encode robustness within the rigid optimization framework.
Robots, putatively general purpose machines, will typically
be assigned multiple critical tasks, oft-times with conflicting
objectives (e.g. fast locomotion and steady perception). More
frequently, legacy constraints imposed by a robot’s existing
design will further reduce the design problem to the selection
of one or two parameters, precluding the possibility of an

15 The scaling of relevant time scale (during a single step) again follows
dynamic similarity, as stride frequency in running scales with

√
L [51].
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TABLE IV
COMPARISON OF PHYSICAL PROPERTIES FOR TAILED SYSTEMS WITH THE CAPABILITY FOR AERIAL REORIENTATION.

Attribute RHex Tailbot TaYLRoACH 2DOF Tailbot Jumper Kangaroo Jerboa Cub

Citation [2] [4] [32] [3] [9] [25] [26]
Number in error figure 1 2 3 4 5 6 7 8
Body length (cm), L 57 11.7 10 13.5 7.5 46 21 21
Body Mass (g), mb 8100 160 46 105 25.1 5030 2270 1250
Tail Mass (g), mt 600 17 4 70 1.4 371 150 310
Tail offset (cm), lb 8 4.5 5 5.2 1 15.6 3 10
Tail length (cm), lt 59 10.3 10.2 7.3 6.8 17.7 30 16.8
Body Inertia (kgm2), Ib 0.15 154×10-6 39.6×10-6 210×10-6 9.3×10-6 0.05 0.025 0.01
Tail Inertia (kgm2), It 016 016 016 479×10-6 6.4×10-6 0.0172 016 875×10-6

Nonlinearity, η 0.136 0.437 0.49 0.227 0.072 0.339 0.1 0.529
Tail effectiveness, ξt 0.5587 0.4683 0.4396 0.6848 0.5705 0.3235 0.3351 0.3911
Peak Motor Power (W) 342 4 2.5 1.75 0.257 19 426 5.82
Driven inertia (kgm2), Id 0.141 145×10-6 37.2×10-6 283×10-6 9.02×10-6 0.0482 0.0236 0.0092
Range of motion, sr 172.5◦ 255◦ 265◦ 135◦ 280◦ 220◦ 180◦ 110◦

Tail speed (RPM), ωm 356 3000 400 320 1000 240 353 77

Error, final angle (45) −1.29% −1.90% −1.26% −4.78% −0.630% 3.48% 1.48% 0.507%
Error, final time (46) 1.20% 3.92% 4.91% 0.105% 0.836% 5.75% 1.94% 6.59%

Achievable final time (tf )
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Fig. 6. The regions of task space (a projection onto the θb,f and tf compo-
nents of the feasible set R) accessible by two instantiations of IR morphology
on RHex for the reorientation task, (1). The tail is limited by power for the
quickest tasks, and by stroke for slower maneuvers; its higher effectiveness
allows far more useful rotation at relevant time scales. The numbers indicate
the two experimentally-validated tasks: 1) tailed reorientation in one body-
length fall and 2) limbed reorientation during a leap. Both tasks fall within
the tailed body’s feasible set, but task (1) exceeds the limbed body’s capability.

optimized design. Every design problem (whether of tails,
limbs, flywheels or other morphology) will likely entail its
own set of constraints, assumptions and objectives which must
be chosen such that (28) results in a suitable and unique design
solution.

In the Performance Evaluation problem, P2, the fixed design
restricts the system performance to a subset of task space (the
projection of the feasible design set R onto the (θb,f , tf )
subspace). This region can be computed for set values of ξ,
Id, P , sr, and ωm by using (12) to query the feasibility of a
task (values of tf and θb,f ), selecting the switching time ts to
satisfy the final angle condition, if possible. A fixed template
design will necessarily be suboptimally geared for most tasks
in the feasible task subspace; the cost of this suboptimality
(along with that of submaximal current limit) can be calculated
through the changing power cost, kp, in (22). We compare
the achievable task subspace for two implementations of IR
morphology on RHex in Fig. 6, and list values of kp where

applicable.
In practice, the design process will use both the selection

and evaluation problems to settle on a solution both practicable
and task-feasible. Starting with the Body Selection problem
(parametrizing a task and choosing a body plan), the designer
should first use R∗i to achieve a rough design, as the reduced
(gearing-optimal) space and simpler form of the constraints
will highlight the consequences of any choices (fixing legacy-
constrained physical properties, or adding constraints to satisfy
other task objectives). Since practical concerns will further
limit parameter choices (e.g. the optimal powertrain is not
likely to exist as an off-the-shelf product), the designer should
then use Performance Evaluations of several candidate designs
to find a feasible and physically realizable design. A major ad-
vantage of this approach over a straightforward optimization is
that the effects of the inevitable deviations from optimality can
be quantified and compared (e.g. through kp), thus informing
the designer’s concessions to practicability.

Real-world actuator selection is constrained by factors be-
yond rated power, as used in the preceding sections. Choosing
a powertrain for a real system also involves characterizing
motors by their electrical (current, voltage), thermal, legacy
(constraints of the robot’s body), physical (size, mass), finan-
cial, and labor costs, as we show in the selection of the final
motor for the following design experiments.

A. Appendage design for RHex

1) Tail payload: As an example of the Body Selection
problem, P1, we designed a tail for RHex by first specifying
the task parameters, and then using R∗t to guide the selection
of the remaining values in pt; the robot’s existing morphology
further constrains our choices to a subset of Rt.

In the interest of direct comparison with Tailbot [2], we
selected task specifications based on replicating one element
of the smaller robot’s behavioral repertoire: a reorientation of
θb,f = 90◦ in the course of falling one body length, L. For
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RHex, this translates to the task specification,

θb,f = 90◦, tf =

√
2L

g
≈ 0.34 s, (56)

where g is the gravitational acceleration. As discussed in
Section IV-B, the large effectiveness easily achieved by a tail
makes that morphology the most attractive choice for this rel-
atively aggressive maneuvering task (significantly decreasing
the actuator requirements through the power equation, (22)).

Of the full set of tailed-body parameters pt, (29), two
(body mass and inertia) were already set by RHex’s existing
body morphology, and a third (pivot location) was constrained
by the body’s envelope. Confident that we could make the
tail very nearly a point mass on a near massless rod (thus
maximizing effectiveness per unit mass and length), we further
eliminated It.16 While Tailbot was a special-built machine, the
tail for RHex was added to the existing platform as a modular
payload [11] and as such the range of motion is significantly
lower than Tailbot’s. As the design of the modular payload
system limits maximum tail sweep to 180◦ regardless of pivot
position, we centered the tail along the body axis to minimize
lb = 8 cm (maximizing effectiveness, reducing η and further
motivating the efficacy of (26)); a small safety margin to
avoid collision with the body reduced stroke slightly further to
sr ≤ 172.5◦. With the selection of this range of motion limit,
tail effectiveness is constrained by (26) to ξt ≥ 0.522, leaving
the question of the balance between tail length and mass. The
addition of weight to RHex via external payload has known
(small) performance costs, while the addition of a long tail has
unpredictable and potentially large consequences on capability
outside of aerial righting; we therefore chose to minimize tail
length by selecting an additional mass constraint based on
previous experiences with modular payloads, mt ≤ 0.6 kg
(giving mr = 0.56 kg). With It ≈ 0, the minimum tail length
to meet the effectiveness requirement can be found directly
from the definition of ξt (see Table II), and is lt ≥ 0.55 m.
As assembled, RHex’s actual tail effectiveness is slightly larger
than required, and is about 20% larger than that of Tailbot (see
Table IV), as needed to achieve feasibility respecting the stroke
constraint consequent upon the roughly 30% reduction of its
tail stroke relative to that of the smaller machine.

Meeting the body stroke specification fixed all parameters
save motor power, which is constrained by the second inequal-
ity in (26); the smallest allowable value of P satisfying this
constraint is approximately 39 W , with an optimal no-load
speed just over 2 Hz. The Maxon pancake motors that drive
RHex’s legs are rated for 50 W continuous operation, and
can achieve transient output up to 342 W [11], but practical
concerns including thermal safety limit current to 12 A, just
33% of transient stall current (see Appendix C). A putative
design using these motors falls well within Rt despite their
suboptimal gearing of 28:1 (effective ω̃m ≈ 1.0, β = 0.33
giving kp,t ≈ 11 for this task, roughly four times higher
than optimal); we found that mitigation of integration issues

16The mass-centered rotational inertia of a small mass on a light rod is far
smaller than the offset inertia, mrl2t ; the It value of this tail was therefore
reported as zero in the cited work.

t = 0 ms 87.5 ms 175 ms 262.5 ms 350 ms

t = 0 ms 32 ms 64 ms 96 ms 128 ms

Fig. 7. Dynamically similar aerial righting in two robots spanning a 60-fold
mass range: Tailbot (top) and RHex (bottom). Each machine rotates 90◦ in
approximately one body length of fall.

outweighed any possible weight savings that could be had
by choosing a smaller motor with more optimal gearing. The
chosen design is capable of rotating the body to 90◦ within
a predicted final time of approximately 300 ms, well within
the performance specification. This tailed design is tested in
Section V-B1.

2) Flailing limbs: A highly attractive alternative to the
added complexity of a tail is to simply use RHex’s existing
limbs, preferably in the in-phase condition so as to land on
all six simultaneously. The total reorientation effectiveness,
as predicted by (53), is ξ` = 0.037 (see Table III). With p`
fixed by the existing design, we can query (12) to check the
feasibility of this body with respect to the task, (56). The
unlimited limb rotation means the design trivially meets the
stroke specification, but not within the final time (Fig. 6).
The very low effectiveness of the combined limbs necessitates
almost eight full swings of the limbs to complete the body
stroke requirement of (56), and thus a substantially different
power train than is used for terrestrial locomotion: the optimal
no-load speed for the limbed design of 2,178 RPM is almost
13 times higher than RHex’s maximum leg speed.

While RHex’s existing morphology is inadequate for this
highly agile task, its limbs still provide a potentially useful
IR capability – the limbed system can rotate 32.3◦ in one
body-length of fall, or over 50◦ in the 1.36 m fall we used to
test RHex’s tail (see Fig. 6). Such small reorientations could
be significant especially when running, where the nominal
body orientation varies a similarly small amount [52]. One full
rotation of RHex’s six limbs produces 13.3◦ of body rotation,
and its powertrain can achieve this reorientation in as little as
150 ms. This new reorientation task fits easily into the aerial
phase of a single leap, usefully allowing modulation of landing
angle; we test it empirically in Section V-B2.

B. Experiments on RHex

1) IR Task Implemented on the Tailed-Body RHex Design:
As an anecdotal validation of the foregoing scaling arguments,
we conducted a series of inertial reorientation experiments on
RHex (Figs. 7 & 8). In the first experiment, the robot was
dropped nose first from a height of 1.36 m (over 8 times the
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Fig. 8. Logged data from a tailed robot experiment. (Top) Body angle,
from high-speed video (blue) and predicted by template with PD controller
(dashed); (Bottom) motor current, applied (red) and predicted by template
(dashed). Disagreement between model and template is primarily due to
unmodeled compliance in the tail pivot and shaft.

standing height and 2.7 times the body length, though we still
required the robot to meet the task specification in (56)).

We implemented a PD (proportional-derivative) controller
on the internal angle in lieu of a bang-bang controller –
as discussed in Appendix B, the saturated PD controller
converges to the bang-bang design given large enough gains.
In practice, the sensor bandwidth and other unmodeled effects
result in oscillation around the regulated angle, so we relaxed
the high gain requirement slightly, accepting the slight per-
formance cost in favor of the extra robustness provided by
the closed-loop design (the effective current switching time
of approximately 0.22 seconds corresponds to a t̃s ≈ 2.85,
slightly later than the optimal 2.40 for the chosen gearing and
current limit). The legs were simultaneously controlled to point
towards the ground.

Data from a typical reorientation experiment can be seen
in Fig. 8; we logged sensor data and shot high-speed video
at 210 frames per second. The robot rotated to within 1◦

of horizontal before landing on all six legs, taking about
350 ms to complete the reorientation, corresponding to a
dimensionless halting time of approximately 4.55, and a
corresponding power cost kp ≈ 23.5 – more than nine times
optimal, and twice the cost predicted in section V-A1, due
to the suboptimal controller and several unmodeled effects.
Drivetrain losses decreased output torque by roughly 25%
and the tail mount and carbon fiber shaft exhibited substantial
elasticity, causing acceleration lag and increasing the deviation
from bang-bang torque application. Despite the high cost of
the suboptimal design, the robot completes the task within 3%
of the target time. As further verification of the template, we
added the PD controller and drivetrain efficiency losses to the
model; simulation of this more accurate (suboptimal) template
is plotted against experimental data in Fig. 8.

When dropped with the tail controller off, the robot im-

pacted the ground nose first, with only the front pair of legs
in support. The impacted limbs quickly snapped, allowing the
robot’s body to strike the ground, causing internal damage.
We therefore conclude that the active inertial tail substantially
expands the task space of RHex by tripling the number of
support limbs available for impact mitigation (thereby roughly
tripling the strain energy tolerable before failure and increasing
the survivable falling height).

To demonstrate this new ability for RHex in a practical task,
the robot was also tested outdoors running along and then off
of a 62 cm (3.8 hip-heights or 1.2 body-lengths) cliff. This
stabilization task is governed by a different set of performance
constraints that could be probed analogously to our approach
to the reorientation task in Section II-C1; 17 in lieu of a more
exhaustive analytic exploration of this task space, we note
that this fall nearly saturated RHex’s tail stroke and likely
represents a near-limit for full stabilization at this running
speed. The robot’s inertial sensors detect the cliff upon initial
body pitch, then actuate the tail according to the same PD
control policy, landing the robot on its feet (Fig. 9). As with
the indoor experiments, a test with RHex running off a cliff
with a passive tail confirmed that the robot lands nose first.

2) IR Template Anchored on RHex as a Limbed Body:
Finally, a third set of experiments tested the ability of RHex’s
legs to work as inertial tails. The existing limb design is
incapable of achieving the original task (90◦ body rotation
in 0.34 s, Fig. 6), and so instead a feasible task consisting of
a single rotation is used instead to test the flail kinematics. As
first reported in [33, Sec. IV-C.5], after leaping vertically into
the air all of the legs were recirculated together to the same
landing angle. Using the legs in phase for this experiment
allows the robot to land on all six, though using the legs
out of phase would have increased the effectiveness by about
3.5% (Section III-C).18 The limbs were rotated clockwise in
the first experiment and counterclockwise in the second for a
net difference of 360◦ in stroke; the difference in final body
angle between the two cases was 14◦. While the leap gave only
enough time for a single revolution of the limbs, the resulting
body rotation made an appreciable difference in the quality
of the landing, supporting our hypothesis that IR with even
unspecialized limbs can be useful.

VI. CONCLUSION

As mobile robots proliferate in the complexity of both their
morphology and behavioral scope, there is a growing need
for principled methodology relating their body design to their
capability. The templates-and-anchors approach adopted for
this paper provides a unifying framework for the comparative
morphology of robots (and even animals) and a practical

17The stabilization task could be specified by keeping the body angle within
some allowable deviation over a time horizon tf by swinging the tail to
mitigate an impulse characterized by H̃ as in (4). Constraints analogous
to (26) could be derived by solving the template kinematics and dynamics
subject to this new task.

18As in the tailed trials, we used a PD controller on the internal angle
(see Appendix B), however here this single control effort was pulled back
into the more complicated limbed body through an anchoring controller
(specifically, six independent PD controllers each regulating a limb to the
common commanded position.
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Fig. 9. RHex surviving a run off a cliff outdoors.

approach to the design and evaluation of inertial reorientation
performance on real robots. We defined the Inertial Reori-
entation template, the simplest model of an IR maneuver,
equipped with a DC motor-like model parametrized by peak
output power. The template revealed the particular importance
of a single parameter, defined here as IR effectiveness, which
prescribed both the appendage rotation needed to move a body
and the power needed to do so in fixed time. Dimensional
analysis of template behavior revealed that a relatively modest
increase in power density (growing with the square root of
length) should be required to retain righting performance as
platform size increases.

The model’s linear dynamics, along with a bang-bang
controller, enabled analytic solution of the template’s single-
switch reorientation behavior, revealing a simple relationship
between morphology and performance, described by the task-
feasible set R, (12). We then showed how the feasible set
could be “pulled back” through a more complex body’s
morphological reduction (defined as the possibly-approximate
mapping between parameter spaces of real robot body and
abstracted template), to provide design restriction to a more
usefully diverse set of machines. The resulting set of feasible
real designs (28) retains enough freedom (e.g. allowing length
to trade for mass) to afford some “optimization” in the sense of
minimizing the impact of the design on other task abilities. In
practice, concessions to practicality will necessitate deviations
from optimality; fortunately, our framework gives the designer
flexibility to compare candidate (suboptimal) designs and even
quantify the performance cost of those compromises (e.g.
through (23)).

Our approach facilitated the design of a tail for RHex,
enabling inertial reorientation capabilities dynamically similar
to the much-smaller Tailbot. A separate anchoring to the
same template quantified the capability of RHex’s existing
appendages (its six semi-circular legs) to produce useful
reorientation in their own right, and revealed a preferred
posture for doing so. A recent proliferation of tails (and other
high-effectiveness appendages) for inertial righting allows us
to calculate and compare effectiveness across a number of
independent designs; generally their effectiveness is close to
0.5, where the connection becomes configuration-independent.
As a result, these designs anchor nicely to the IR template
with relatively low error. We expect that most well-designed
appendages will fall within this paradigm.

The constraints making up R and its gearing-optimal re-
finement (26) revealed general principles of design for righting
morphology, while the morphological reductions provided cru-
cial insight into the tradeoffs of each body type; we provide a

detailed discussion in Section IV. Tails are a natural choice for
fast, large amplitude inertial reorientation, owing to the ease
at which they can be designed for high effectiveness values
without disrupting the existing platform morphology. However,
as legged robots increase the numbers of DOFs in limbs
and body alike, these affordances should provide compelling
sources of inertial reorientation as well. In practice, the choice
of anchor morphology for enabling inertial reorientation in a
robot is tightly coupled to overall function with respect to its
mission, historical and other constraints on body design, and
the task-specific rewards for high reorientation performance.

While the present analysis focuses on purely aerial maneu-
vers, inertial appendages also show promise in a variety of
terrestrial tasks, stabilizing or actuating turns [4, 6], or stabi-
lizing pitch over obstacles [2]. Likewise, inertial appendages
have utility beyond the sagittal plane for aerial maneuvers,
with out-of-plane appendage swings capable of effecting body
rotations in yaw and roll as well as pitch, e.g. [19, 32]. We
postulate that tail effectiveness will remain a useful metric
in these arenas as well, though the analysis of the dynamics
and control affordance underpinning such behaviors remains
an open problem.
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APPENDIX

A. Generalized Template-Anchor Relationship

This section develops a general framework for the anchoring
of more complex dynamical systems to a simpler template

http://kodlab.seas.upenn.edu/Aaron/TailsTR


18

dynamical system [37]. This is a more general notion of
anchoring than in, e.g., [53], which requires the template
dynamics be, “conjugate to the restriction dynamics of the
anchor on an attracting invariant submanifold,” or in [10,
Sec. 1.2], which seeks, “controllers whose closed loops result
in a low dimensional attracting invariant submanifold on which
the restriction dynamics is a copy of the template.”

In particular consider two dynamical systems: the “tem-
plate”, X , and the “anchor”, Y . Each system has a state
(x ∈ X and y ∈ Y , respectively), control input (uX ∈ UX
and uY ∈ UY , respectively), parameter set (pX ∈ PX and
pY ∈ PY , respectively), and dynamics (ẋ = fX(x, uX , pX)
and ẏ = fY (y, uY , pY ), respectively). The template is the
simpler model, so in general, dimX ≤ dimY .

The generalized anchoring is a specification of a set of map-
pings between the state spaces, control inputs, and parameter
sets of the template and anchor. Specifically, define a state
reduction, h : Y → X , that anchors the state space, and
its right-inverse, h† : X → Y , such that h ◦ h† = idX .
Let Dh and Dh† be the Jacobians of these maps. Define
similarly a control reduction19, g : UY → UX , that anchors the
control input, and its right-inverse, g† : UX → UY , such that
g ◦ g† = idUX . Finally, define a parameter or morphological
reduction, Ξ : PY → PX , that anchors the parameter space,
and its right-inverse, Ξ† : PX → PY , such that Ξ◦Ξ† = idPX

.
Collectively these six maps fully define the anchoring of Y
in X .

An anchoring will be called exact if,

fY (y, uY , pY ) = Dh† ◦ fX(h(y), g(uY ),Ξ(pY )), (57)

which implies that,

fX(x, uX , pX) = Dh ◦ fY (h†(x), g†(uX),Ξ†(pX)) (58)

(though the reverse is not necessarily true). By contrast, an
anchoring will be called approximate if this relationship is
only approximately true (up to some desired tolerance).

Define a template controller, τX : X × PX → UX , which
may be applied by assigning uX = τX(x, pX). Similarly
define an anchor controller, τY : Y×PY → UY , which may be
applied by assigning uY = τY (y, pY ). The template controller
may be pulled back into the anchor via the choice,

τY (y, pY ) := g† ◦ τX(h(y),Ξ(pY )). (59)

An anchoring will be called passive if this is the only
control authority exerted on the anchor system. By contrast,
an anchoring will be called active if there is an additional
anchoring controller, τ̄Y , exerted in order to achieve the exact
or approximate anchoring, i.e.,

uY = τY (y, pY ) + τ̄Y (y, pY ), (60)

where τ̄Y lies in the null space of g.
In this paper we consider three anchor systems: one that has

a passive exact anchoring, one that has a passive approximate

19Note that often the control input will be a subset of the cotangent bundle
over the state space, UX ⊂ T ∗X and UY ⊂ T ∗Y , i.e. force or torque applied
to one or more coordinates. In this case, the control embedding may be related
to the state space embedding, g := πU,Y (Dh†)T , i.e. the projection down
to the appropriate coordinates of the transpose of the Jacobian of h†.

anchoring, and one that has an active exact anchoring. For
the passive anchors, X = Y and UX = UY – therefore
the maps h, h†, g, and g† are all identity. The active anchor,
through the additional controller, τ̄Y , restricts down to the
template dynamics exactly, and so these maps are similarly
uninteresting. Therefore this paper’s focus is on the remaining
anchoring functions, Ξ and Ξ†, and on the design of the
template parameters and controllers to achieve the task.

B. Alternate template controller formulations

For additional robustness, the template controller may use
proportional-derivative (PD) feedback on the body angle (rel-
ative to the desired final position, θb,f , and velocity, θ̇b = 0).
The controller torque takes the form,

τ = Kp(θb,f − θb) +Kd(0− θ̇b), (61)

subject to the limits imposed by the motor model. Given high
enough gains, the torque will saturate, producing speed-limited
acceleration and current-limited braking as in the switched
case; the effective switching time (when τ = 0) depends on
the ratio of controller gains.

The ratio of gains that produces the optimal switch is found
by examining the point where the acceleration switches signs,
i.e. when the terms of (61) are equal; plugging in the angle and
velocity at the time of switch and applying the spatiotemporal
transformation (13) yields the ratio for the optimal value of p̃
(see [40, Sec. II-B] for this derivation). After scaling back to
physical torques the optimally-switching gain ratio is,

Kd

Kp
≈ 0.26

γ
(62)

Servoing on the internal angle produces an equivalent for-
mulation for the PD controller. In the dimensioned, zero an-
gular momentum template with initial conditions θb = θr = 0,
the connection field, (5) can be integrated to yield θb = −ξθr.
Starting with a PD controller servoing the body angle to a
desired orientation θb,d,

τ = Kp(θb,d − θb) +Kd(0− θ̇b)
= −K ′p(θr,d − θr)−K ′d(0− θ̇r), (63)

where K ′p := ξKp, K ′d := ξKd, and the desired appendage
angle θr,d := −θb,d/ξ. The control torque on the appendage
is opposite in sign to the body angle controller as expected.

C. Dimensionless constraints for current-limited dynamics

If the maximum allowable torque (equivalently motor cur-
rent) is limited to some factor β ∈ (0, 1) less than the stall
torque of the motor, τ` = βτm, the optimal reorientation
consists of three phases: a constant torque phase until the
acceleration becomes voltage-limited, then a phase following
the speed–torque curve of the motor until the controlled switch
at t̃s, followed by a constant braking torque phase until t̃h.
These dynamics can be integrated to produce a current-limited
equivalent to R. Alternatively, equivalent functions to g̃h and
g̃θ can be used to calculate kp, ks and kt given β and a
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parameter set p. We provide those equivalent relations here;
their full derivations can be found in [40, Sec. I-A],

g̃h(ω̃m, t̃s, β) :=t̃s +
ω̃2
m

β

(
1− β exp

(
−(t̃s − t̃`)

ω̃2
m

))
(64)

g̃θ(ω̃m, t̃s, β) :=ω̃mt̃s + ω̃3
m(β − 1) exp

(
1− β
β
− t̃s
ω̃2
m

)
+
βω̃3

m

2

(
1− exp

(
2(1− β)

β
− 2t̃s
ω̃2
m

))
.

(65)
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