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ABSTRACT

SELF-MANIPULATION AND DYNAMIC TRANSITIONS FOR A LEGGED ROBOT

Aaron M. Johnson

Daniel E. Koditschek

How can we make a robot that can go anywhere on its own? This thesis presents several new be-

haviors on the RHex robot that greatly increase the variety of obstacles that it can overcome, includ-

ing vertical jumps, flips, leaps onto and across ledges, aerial reorientations, and proprioceptively–

aware behaviors. These behaviors inspire new tools to model and understand their transitional

nature, wherein it is no longer useful to think of each step as being an equal part of a steady state

gait. Legged robots will necessarily experience a variety of changing contact conditions as they

locomote in complex environments epitomized by the rocky, sandy desert. Drawing on the much

more mature literature of robot manipulation, this thesis presents the new modeling paradigm of

“self–manipulation” that formally generates analytical equations of motion across all contact states.

The framework is amenable to many ubiquitous simplifying assumptions (such as rigid bodies, plas-

tic impact, persistent contact, Coulomb friction, and massless limbs) to reduce the complexity of

these models despite the obvious physical inaccuracies that each incurs. Nevertheless the models

capture enough of the physical world to represent the challenges confronting interesting behaviors

in a qualitatively correct manor, including the effects of impulsive transitions between the various

contact modes. More than numerical simulation, our goal is the distillation of these physically

parametrized models into formal design insights (platform design, behavior design, and controller

design), utilizing a variety of analytical and numerical methods. These behaviors are only possible

with a robot designed to be both robust and powerful, and they make use of the unique capability

of legged machines to interact with the environment in varied and, possibly, unpredictable ways.

Careful actuator modeling is needed to achieve such acrobatic results, and so this thesis presents a

spectrum of motor sizing tasks to ensure that the platform is up to the task. These tools are used to

gain insight into various dynamic transitions for RHex, and we conjecture that their generalization

will be of importance for a broad class of legged robots operating in remote and unstructured terrain.
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Chapter 1

Introduction

The goal of robotics is to create systems that are capable of performing tasks that aid humanity. That

aid can take many forms, such as search and rescue, vacuuming, or entertainment. Whatever the

task, what is desired is a behavior — we want a machine that can perform the search, clean a floor,

or make us laugh. A fundamental decision in the design of a robot to accomplish some behavior

is if and how it will locomote, whether that be with wheels or legs or wings. For robots that only

need to interact with the world in a small area, such as on an assembly line, being bolted to the

ground and reaching from there may be sufficient. For robots that operate only in flat environments,

such as in an office building or on a highway, wheels (one of humanity’s greatest inventions) are

an efficient and effective choice. However a robot that needs to perform a task somewhere other

than in these restricted, and often engineered, environments requires more advanced locomotion

capabilities. Unlike wheels, legs do not require continuous contact with the terrain, making them

well suited for uneven and broken terrain such as a rocky desert, as well as the “evenly broken”

terrain of an uncluttered stairwell.

One promise of legged motion is versatility, and as the size of the obstacles grow relative to

the robot’s size, the robot’s controllers can change the gait parameters to better react to the terrain.

However at some point the motion can no longer be usefully described as deviations about a steady

state motion. The motion is inherently transitory— how can a robot, such as in Figure 1.1, transition

onto the first obstacle, and then transition over second and land on the third? When every step

1



Figure 1.1: X-RHex in the Mojave desert.

is actually different there is little to be gained by pretending that they are the same. Unlike the

maturity of steady state locomotion research [23, 125, 146, 154], dynamical transitional behaviors

have not received nearly as much attention other than by formulating them in terms of compositions

of existing steady state constituents [26, 169]. As new conditions arise, it is crucial to formally (and

therefore automatically) generate and analyze the system dynamics, in a manner requiring as little

knowledge as possible about the geometry and mechanics of the substrate.

In contrast, multi-fingered object manipulation has been well formalized for many decades [13,

119, 120, 134, 137, 162] motivating the new methods presented here to leverage this established

body of work and extend it to legged robots as they manipulate themselves through the world. We

exploit these “self-manipulation” modeling choices to generate the diverse constrained quasi-static

and Lagrangian dynamics (as well as the impulsive transition conditions that relate them) arising

from the exponentially many possible contact conditions. The framework is body centric (does not

require full knowledge of the world reference frame), allows for massless limbs (does not require

an invertible mass matrix), and permits underactuation (does not require an invertible kinematic

Jacobian). These analytical models can be integrated numerically to simulate a certain situation,

2



but at best all that can be learned from that is the same thing that can be learned from running the

physical robot (though possibly at a lower cost). The true value of these analytical models is their

ability to provide for design insight.

There are three aspects of design a roboticist might explore: platform design, behavior design,

and controller design. A capable robot requires good design in all three areas, and the field of

robotics is working to collectively synthesize the best design insights to help build robots that can

effectively aid humanity. One way to gain such design insight is to look to biology, but insight from

biology has some limitations — the physical properties of an animal’s body can be measured and

its motion and applied forces observed, however we do not yet have the tools to directly observe the

controller that the animal is using. A roboticist meanwhile can gain insight in all three areas through

direct observation of a robot executing some controller and performing some behavior. Beyond that,

the roboticist also has direct control over the construction or selection of both the platform and the

controller, and can express their design insights directly here. However the resulting behavior of the

robot is a complicated function of how the robot interacts with its environment, which the roboticist

can influence only indirectly through the design of the platform and controllers. This mismatch in

capabilities between engineering and biology is in fact a great advantage to both fields. Biologists

can observe and measure behaviors that roboticists hope to one day recreate. And roboticists can

test controllers that biologists hypothesize to be a good model of the animal’s control system.

1.1 Contributions and Organization

This thesis explores many aspects of robot design using the hexapedal robot RHex [154]. Even after

approximately 15 years of research on RHex, this thesis presents several new behaviors as well as

expanding on many existing ones. These various behavioral advances are enabled by careful design

of the robot and its actuators, and serve as the inspiration for new modeling and analysis tools. A

summary of these behaviors, as well as the nature of their contribution, is given in Table 1.1. Some

of these design insights were gained from the analysis of the behaviors: Enumeration behaviors

that were found largely due to the systematic enumeration and exploration of the available contact

3



Behavior Section Architecture Analysis

Leap, Table Edge 3.4.3 Actuation, Robustness Enumeration, Hybrid-system

Leap, Vertical 3.4.1 Actuation Enumeration, Hybrid-system

Leg Fault Recovery* 2.2.2 Proprioception Inspiration

Reactive Standing 4.3.1 Proprioception Self-manipulation

Scramble Onto Table 3.4.3 Actuation, Robustness Hybrid-system, Inspiration

Tailed Reorientation* 2.1.1 Actuation, Robustness Inspiration

Leap, Forward/Pronk 4.3.3 Actuation Hybrid-system, Self-manipulation

Leap, Obstacles 3.4 Actuation Hybrid-system

Sensor Sweep* 4.3.2 Self-manipulation

Wall/Stair Detection 2.2.2 Proprioception

Table 1.1: Summary of behavioral contributions of this thesis. See Section 1.1 for explanation

of the labels, and Section 1.2.2 for further details on individual behaviors and related work. The

first group represents entirely new behaviors for RHex, while the second group represents existing

behaviors which were either improved, or are now better understood, through the contributions

listed. * Behaviors developed in close collaboration with coauthors.

words (Chapter 3), Hybrid-system behaviors that take advantage of the multiple ways in which

the robot can contact the world, and the impulsive transitions between them (Chapter 5), Self-

manipulation behaviors for which the analytical dynamics models are able to provide significant

design insight (Chapter 4). Other contributions pertained to the engineering of the robot architecture

(both hardware and software): Actuation behaviors who benefited significantly from contributions

in principled actuator selection (Section 2.1), Robustness behaviors which are made possible due to

the robustness and reliability of the newest robot designs (Section 1.2.1), Proprioception behaviors

which use proprioceptive feedback based on actuator modeling (Section 2.2). Finally there are

still some behaviors where the contribution is primarily Inspiration, that is those which still rely

primarily on the inspiration of their designer (and which inspire the need for tools beyond what is

presented in this thesis).

The remainder of this chapter presents the new robot designs, X-RHex and XRL, in Sec-

tion 1.2.1. Their robust construction, powerful actuators, and versatile sensor interface are crucial

prerequisites for interesting dynamical behaviors. Section 1.2.2 then introduces these behaviors, as

summarized in Table 1.1, and gives motivation and prior work for each. Section 1.2.3 then explores
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some of the modeling principles used throughout the thesis.

Chapter 2 focuses on the question of actuator modeling and selection1. The dramatic behaviors

of interest in this thesis require both careful actuator selection to ensure sufficient power is available,

but also careful modeling and monitoring to ensure that the actuator is not damaged and is providing

work in the desired manner. In particular a continuum of actuator selection problems is introduced,

and a selection process for a simple dynamical task (tailed reorientation in flight) is given as a case

study in careful motor selection. For more challenging robot design tasks, such as the construction

of X-RHex, a heuristic method based on prior robot designs is used. The thermal properties of

electric motors are modeled and the “heat coefficient” metric is defined to compare the thermal

behavior of different motors. Once in use on a robot, continued online monitoring of the motor

performance provides a proprioceptive sense. This sensor is used in three example behaviors: maze

solving, stair climbing, and leg fault recovery.

Chapter 3 presents dramatic leaping transitions as a demonstration of the types of behaviors

that the design and modeling results presented in this thesis are working towards understanding2.

A hybrid systems framework characterizes the dynamic transitions of a planar “legged” rigid body

from rest on level ground to a fully aerial state. The various contact conditions fit together to form

a topologically regular structure, the “ground reaction complex”. The body’s actuated dynamics

excite multifarious transitions between the cells of this complex, whose regular adjacency relations

index naturally the resulting “leaps” (path sequences through the cells from rest to free flight). This

chapter exhibit on a RHex robot some of the most interesting “words” formed by these achievable

path sequences, documenting unprecedented levels of performance and new application possibilities

that illustrate the value of understanding and expressing this vocabulary systematically.

Chapter 4 introduces self-manipulation as a new formal design methodology for legged robots

with varying ground interactions3. The term denotes a set of modeling choices that permit a uniform

1Portions of this chapter, as well as related text and figures, previously appeared in [55, 65, 86, 87, 92]. All of these

papers were written in collaboration with their respective co-authors, and only the contributions listed here are claims of

this thesis.
2This chapter, as well as related text and figures, previously appeared in [89, 91].
3This chapter, as well as related text and figures, previously appeared in [90]. Additionally portions of this chapter,

as well as related text and figures, also previously appeared in [88] which was written in collaboration with the listed

co-authors, and only the contributions listed here are claims of this thesis.
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and body-centric representation of the equations of motion — essentially a guide to the selection

and configuration of coordinate frames. This chapter presents the kinematics and dynamics of a self-

manipulation system in the form of a consistently structured representation that simplifies and unites

the account of these otherwise bewilderingly diverse differential algebraic equations. Cleaving as

closely as possible to the modeling strategies developed within the mature manipulation literature,

self-manipulation models can leverage those insights and results where applicable, while clarifying

the fundamental differences. Our primary motivation is not to facilitate numerical simulation but

rather to promote design insight. This chapter also instantiates the abstract formalism for a simpli-

fied model of RHex, and illustrate its utility by applying a variety of analytical and computational

techniques to derive new results bearing on behavior, controller, and platform design. For each ex-

ample, empirical results document the specific benefits of the new insight into the robot’s transitions

from standing, to moving in place, to leaping.

Chapter 5 extends the self-manipulation formalism of Chapter 4 (and similarly for manipula-

tion [134]) to include the impulsive dynamics of the impact events that change the active contact

constraints (which make up the discrete state)4. This sets up a path to specifying a formal hybrid

system that is compatible with many simplifying phenomenological models, specified in Assump-

tions 5.1–5.9. A central claim of this chapter is the derivation of a consistent extension for La-

grangian dynamics, Newtonian impact laws, and complementarity contact conditions to systems

that have certain rank deficiencies in their inertia tensor that maintains equivalence for nonsingular

systems (Lemmas 5.1–5.3 and Theorems 5.5–5.6). Next, this chapter defines a new qualitatively

useful pseudo–impulse that precludes certain Zeno phenomena. In addition this pseudo–impulse

removes some spurious transitions by imposing an implicit bound on contact velocity below which

the impact cannot impulsively remove existing contact constraints. Finally the continuous time and

discrete time physics are summarized in the definition of the self-manipulation hybrid system (Def-

inition 5.2). The closure and consistency (including if it is deterministic and non-blocking) of this

system is left as an open question.

4This chapter, as well as related text and figures, is in preparation for submission as [85]. That paper was written in

collaboration with the listed co-authors, and only the contributions listed here are claims of this thesis.
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1.2 Background

1.2.1 RHex

RHex was introduced in 2001 as a “Simple and Highly Mobile Hexapod Robot” [154]. Despite

its apparent age, the limits of the design are still unknown and in fact many new behaviors are

demonstrated in this thesis that go beyond what was previously thought to be possible. In the

process, several new RHex platforms are introduced, as shown in Figure 1.2 (see [55, Section 4]

for a brief history and comparison of various versions). The physical robustness, higher ground

clearance, substantially greater low end torque, modular payload system, and lighter weight (for the

XRL variant) of these new robots were crucial to the success of the dynamic transitions of interest

in this thesis.

The prior research versions of RHex that were available, the original Research RHex [154] and

the EduBot [180] (shown in Figure 1.2b), had shown great agility but were not up to the task of high

energy behaviors in the desert environments of particular interest in this thesis. This motivated the

development of new platforms that would be better suited for such experiments. Initial testing in

the Mojave desert used the Desert RHex upgrade to Research RHex (Figure 1.2a), In particular, it

features several hardware updates: a new hard shell of carbon fiber and acrylic to survive impacts

with the terrain, upgraded batteries to allow for longer experiments, a new wireless antenna to

increase communication range, and added sensors (power logger, GPS) for monitoring progress.

These improvements were sufficient for initial testing, but the need for a new platform was

clear. The aging architecture was difficult to maintain, and the robot was not reliable especially

when asked to perform high energy behaviors on rough terrain. Therefore a completely new robot

was designed: X-RHex (Figure 1.2c). The design of X-RHex was a large collaborative effort led

by the author and documented in [55, 65]. The dimensions of X-RHex were tightly constrained —

the footprint is almost identical to Research RHex (in order to maintain the locomotion capabilities

of that design, particularly on stairs) and the body height was kept to a minimum (just over half

the height of Research RHex). In addition it uses commercial off the shelf (COTS) parts whenever

possible, as buying replacement parts is easier than making them. Furthermore it introduced the
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(a) Desert RHex, variant of [154]. (b) EduBot, variant of [180].

(c) X-RHex [55]. (d) XRL [65].

Figure 1.2: The robots used in this thesis. These figures are included here courtesy of (a) Clark

Haynes, (b) Kevin Galloway, (c) and (d) Ryan Knopf.

laboratory on legs concept — a modular payload system that allows a user to rapidly develop

behaviors in natural, outdoor environments as easily as on a lab bench. Subsequently a lighter

version, X-RHex Lite, was designed using the same architecture (Figure 1.2d). It has a slightly

smaller footprint and about 25% less mass [65], while still using the same COTS components and

modular payload system as X-RHex.

One problem that is exacerbated in a desert environment is thermal considerations for motors.

In the most dramatic of the behaviors presented here, the motor core temperature rises 50◦C in half

a second — only with a careful understanding of motor thermal properties can such behaviors be

safely developed and used. These issues led to the development of a continuum of motor selection

tasks [65], heuristics such as the motor heat coefficient to compare motor thermal properties (Sec-
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tion 2.1.3), and a general framework for choosing a motor based on a dynamic task specification

(Section 2.1), applied to a concrete example with analytical solutions (Section 2.1.1). In addition to

managing the thermal budget, motor modeling is also useful as a virtual contact sensor (Section 2.2),

which can be used e.g. for stair climbing [86].

1.2.2 Behaviors

There are many useful behaviors and behavioral components analyzed throughout the course of this

text. Here we summarize and give context to these various behaviors.

Tail Assisted Self Righting

Animals use their tails in many different ways – see the introduction to [92] for an overview. While

tails can similarly provide many benefits to mobile robots, the focus here is exclusively on aerial

self-righting. In general, if survivability or required performance is very sensitive to orientation, an

inertial tail will be beneficial. Designing a robot with a tail, or adding one to an existing design,

has many costs, including the extra mass, volume and extended body envelope as well as the added

complexity and new opportunities for failure. Weighing the penalties associated with these multi-

faceted disadvantages against the benefits of increased maneuverability lies far beyond the scope

of this behavioral study whose contribution is to address the much narrower question of how to

parametrize the design space and then how to select within it an actuator for a self-righting tail.

Disturbance Detection

A robot operating in an interesting environment will encounter many obstacles that will disrupt its

steady state locomotion, whether it is an insurmountable obstacle like a wall or simply something

that requires a different locomotion strategy, such as a staircase. These behaviors are intended to

demonstrate the value of adding into a leg contact detector an internal state model patterned on

the decades-long tradition of industrial online fault detection [50] (translated more recently into

the setting of robot execution monitoring [142] and hybrid systems diagnosis [126]), without the

need for an exteroceptive sensor such as a laser scanner. The first behavior is a maze exploration
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behavior with the simple obstacle avoidance rule of “turn right”. The second is a stair climbing

behavior where the transition to the stair climbing gait is triggered and executed in stride.

In contrast to the methods used here, prior work has relied upon memoryless contact detec-

tors, for example, examining directly the discrepancy between commanded and actual motor shaft

output [100, 179] and the difficulty in getting these schemes to function robustly serves as a strong

motivation for the present work, and Section 2.2.1 documents the comparative benefit of this internal

model approach to diagnostics relative to the memoryless alternatives.

Such difficulties have motivated prior work to undertake the significant effort of instrumenting

a direct physical contact sensor [109], but this is a particularly challenging exercise on the continu-

ally circulating legs of RHex-style machines5. With non-recirculating legs the more modest cost and

complexity of leg contact hardware can be justified by the documented benefits — e.g., in climbing

unknown vertical substrates [165] or highly irregular level ground surfaces [38] (albeit, note these

authors described the physical touchdown sensors as not “adequate”). Even in these settings, run-

ning a model based observer will provide a good reference for accurately determining what is an

expected disturbance and what is an unexpected disturbance. The broader virtues proposed in the

industrial fault detection literature [50] for “analytical redundancy” will likely make the state-based

software contact sensor explored here a useful adjunct to such hardware solutions.

Leg Fault Recovery

The most compelling case for legged locomotion arises from the promise of robust adaptation and

graceful degradation of mobility performance in mechanically complex and highly varied environ-

ments and under conditions of changing or compromised self-health. To date most of the locomotion

literature has addressed operation in the extremes: either fixed, consistent terrain wherein a specific

gait can be tuned over repeated trials and accumulating experience [36, 98, 154, 165, 181, 188] or

wildly varied footing conditions [28, 62, 143, 173] wherein it is not at all clear that the notion of

5 Bringing the sensor signals across the unconstrained rotating legs necessitates some non-contact communications

channel. Prior work used a wireless scheme in [109] but this has proven very challenging to maintain in robust operating

form. Additional work has also experimented with infra-red (unpublished) and even slip-ring [54] communications

bridges between body and legs. All of these hardware approaches can be coaxed into functional operating form, but

— as long argued in the “sensor-minimal robotics” literature [31, 118] — each incurs its own additional fragilities and

operational complexity.
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a gait is even appropriate. We are aware of only two investigations of adaptive legged locomotion

in the presumably far more common middle-ground setting of challenging but “modestly” varying

terrain: online deterministic gait parameter feedback [179]; and tuned robustness against stochastic

perturbation of an open loop stride-map as an alternative to deterministic gaits [29]. In contrast,

although the promise of redundancy against individual joint or limb failure ought to be one of the

major advantages of legged mobility, with few exceptions [17, 49, 101, 184] there is little legged

robotics literature on gait adaptation in the face of compromised self-health.

Inevitably, the question of how to respond to various alterations in the condition of the environ-

ment and state of self-repair hinges upon the issue of what sort of sensing is available. One way to

detect the changed circumstances that may require an altered locomotion strategy is to instrument

the legs with contact, force, strain, or other sensors that measure directly what is happening to them

or their environment. However, instrumenting a leg may not be easy and will always have a cost

both in terms of money and design constraints. This behavior further pursues the long-standing

theme of sensor-minimal robotics [31, 118] applied to reactive locomotion in [100] and continued

in [179]. Specifically, Section 2.2 introduces and studies empirically an algorithm that can acquire

the relevant information using an estimator driven only by a motor mounted encoder that would

typically be included in any actuator package. Other work on loss of limb [49] and reduced limb

functionality [184] shows interesting gait strategies, but differs from these results as the presented

behaviors make use of no sensory information other than actuators, and employ a robot with a

minimal number of actuators for locomotion.

Reactive Standing

Reactive standing (Section 4.3.1) seeks to find a reduction in the power needed for stand-in-place

tasks on unmodeled rough terrain [88]. The controller developed is quite simple and implements

the intuitive notion that all actuators must resist external load while relaxing any relative imbalances

between their individual efforts. However it is not immediately apparent under what circumstances

this scheme is correct, nor even that it converges in all application situations. The analytical ex-

pression for internal and external torques facilitates the identification of the appropriate operating
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conditions and a proof of convergence assuming they prevail. As this proof covers both round and

stick legs, the design choice makes no real difference for this behavior. The controller provides up

to a 90% reduction in power use compared to an open-loop stand.

Why worry about the power used when the robot is idle? In one urban search and rescue

study researchers discovered that for 49% of the robot’s deployment it remained stationary, as the

operators needed that time to gain situational awareness [25]. This is corroborated by RHex tests

in the Mojave desert, where in at least one specific instance during a trial in March of 2010, the

operator paused the robot in a standing posture while deciding how to proceed, causing a motor to

burn out after less than a minute. Robots operating on challenging terrain, especially in the heat of

a desert, need a low-energy standing posture for health and mission runtime.

Pitching Sensor Sweep

For almost any exteroceptive task, perceptual capability can be increased by extending a sensor’s

field of view by moving it. Rather than (or in addition to) adding dedicated “neck” actuators,

Section 4.3.2 documents how RHex’s legs can be used to provide a change in pitch, increasing the

vertical field of view of any payload. Here the formal setup of the constraints in different contact

modes determines analytically both the pitching range as well as the pitching velocity in any mode.

Furthermore the dynamical liftoff conditions provide a speed bound for safe execution.

Our empirical example of this general idea features a horizontal (Dorsal) planar laser scanner,

a sensor that has no vertical extent and so the only way to build a two dimensional depth map is to

move it out of the plane. Prior work on this behavior used an ad-hoc geometric model of the half

circle legs to numerically compute an operable scanning range of about 10◦ [155]. Without an ana-

lytical form, the geometry would have to be re-generated in each contact state. It turns out that this

behavior benefits from a different contact mode (with the body sliding on the ground). Furthermore

while both round and stick legs can reach this same peak pitch, the rounded legs require less torque

to do so. Since the kinematics and dynamics are analytically derived with this formalism across all

contact states, the pitching velocity can be controlled, and the maximal velocity the behavior can

execute without breaking ground contact is found to be higher in the sliding contact mode. The
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final behavior has a range of ±17◦ that can be used for example to more easily detect stairwells and

cliffs [86].

Leaping

Leaping is a key transition from rest to a variety of high energy behaviors. It allows us to engage in

nearly pure form one of the foundational questions of robotics: how can we program the transfer of

energy in a robot’s battery or fuel tank to its mechanical state?

When jumping onto a ledge or across a gap, sometimes a single leap is all that is needed. How-

ever the leap can also be used to setup a second step, as exemplified by the behaviors documented

in Section 3.4. In that section, the second step will be essentially governed by the dynamics of the

SLIP template (i.e., the spring-mass hopper literally instantiated by Raibert [146], and empirically

used by all running animals [14]), wherein the state of the SLIP system (height, forward velocity,

etc) at apex before a hop determines the reachable set after the hop [6, 72]. Naturally the second

hop can lead to a third, and thus the leap can be a quick transition into a high kinetic energy running

gait from a seated position.

Beyond its value in reaching across obstacles and setting up other behaviors, there are a number

of tasks that may entail a leap as an intrinsic goal. The robot may need to flip over if it is not

completely symmetric or if there are payloads only available on one side [152]. It also may need to

reach a certain height to gain a better vantage point for its sensors.

Pitch Control

In addition to considering leaps designed to cross a gap, jump onto an obstacle, or continuing into

another leap, this behavior studies a finer use of the actuators over the course of a prescribed leap

through the contact modes (notionally motivated by gap crossing or pronking [4, 128]) wherein

the robot must at some point engage all its legs on the ground and reach an aerial state with large

forward but low pitching kinetic energy.

Section 4.3.3 analyzes three aspects of pitch control for such leaps in — the behavior design

(focusing on the splay or the asymmetry in leg angle), the controller design (focusing on stubbing
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the toes and using the legs as tails), and the robot design (focusing on the shape and the mass of the

legs). The underlying dynamics of a splayed posture is beneficial in several ways. While pushing

with both legs equally maintains a level pitch at first, the front leg provably break its ground contact

first, and so the robot pitches upwards. A splayed leap (as used before and adjusted via hand

tuning [128], touchdown plane control [4], or exhaustive search as in Chapter 3) minimizes this

liftoff imbalance. Furthermore a splayed pronk has the added benefit of a higher possible velocity.

The best results for pronking on RHex have all resorted to decelerating or stubbing the rear

legs near the end of stance [4, 127]. We show analytically that this negative work does cut down

the pitch of the robot, though at the same time bleeding off some of the forward kinetic energy, as

demonstrated experimentally in an extreme case.

Next, to illustrate the role of leg design in leaping, the dynamics are combined with the takeoff

conditions in single support to derive a bound on maximum forward velocity. This bound suggests

that the rounded leg design of RHex enables a higher maximum speed than an equivalent stick leg.

Furthermore we consider the inertial effects of the nearly massless legs [7], which in the air act as

“tails,” [92, 108], that are able to generate a non-trivial body rotation.

1.2.3 Modeling Paradigms

In addition to developing new platforms and behaviors for those platforms, this thesis advances

several modeling paradigms summarized as “self–manipulation” models. This section gives a brief

background on these models.

Self-Manipulation and Manipulation

Self-manipulation is the process of using one’s limbs to rearrange one’s body (to follow the opening

line of [119]) [99, 115, 153], broadly including any activity that alters a robot’s configuration,

whether or not it affects the center of mass frame. Figure 1.3 suggests how the self-manipulation

problem (Fig. 1.3f) relates to more traditional manipulation (Fig. 1.3a) and locomotion (Fig. 1.3d)

problems. Joining these perspectives motivates our exploration of the long noted more general
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a) b) c)

d) e) f)

Figure 1.3: Various models for a closed-loop kinematic chain: a) manipulating the world with your

feet, b) “broken back” – symmetric robots that meet in the middle, c) free body diagram, d) “walking

model” – single open chain, e) being manipulated by the world, f) self-manipulation (used here).

duality between locomotion and manipulation6 [10, 115, 186, 187], leading to dual-use actuators

that can locomote and manipulate [11, 111, 121, 122, 140, 166, 174], as well as lending insight into

locomotion through manipulation [10, 160] or the reverse [21, 73].

Following that tradition, the self-manipulation methodology appeals to the key formulation

of the manipulation literature, the “grasp map” or “grip transformation”, G [120], which relates

wrenches at the contact points to wrenches on the object.7 Specifically, in Section 4.1.2, we

adopt the same modeling choices that lead to this map in the traditional setting. However in self-

manipulation, the robot must itself move relative to the inertial world, and we focus attention on the

consequences of this departure from the manipulation framework.

Of course such modeling decisions are not required to arrive at accurate kinematics or dynamics.

Consider the robot in Fig. 1.3, a single kinematic chain similar to a 4 bar mechanism. The robot

could be “cut” in many ways, in order to determine the identical e-DOF (degrees of freedom, here

e = 1) from various q-dimensional open-loop dynamics and c constraint forces. For example, one

might make: one cut, at a toe (q=3, c=2, Fig. 1.3d, common in walking analysis [37], [162, Ch. 16])

or at the robot center (q=4, c=3, Fig. 1.3b, producing strong symmetries); two cuts at the hips (q=5,

c=4, Fig. 1.3e, akin to parts feeding [187]) or at the toes (q=5, c=4, Fig. 1.3a, direct instantiation

6 E.g., “a different way to view a person walking on a globe is to say the person is manipulating the globe with his

feet,” [186].
7We will adopt the specific notation introduced in [134], though these ideas coincide with the formulation in [13,

119, 120, 137, 162] — and, indeed, most works on the subject make similar modeling decisions.

15



of manipulation [10, 160], as well as Fig. 1.3f, sometimes called a “floating-base” [48]); four cuts,

at the joints (q=9, c=8, Fig. 1.3c, a free body diagram). Each variation of this example results the

same one-DOF mechanics model, however cutting at the toes (Fig. 1.3f) admits simple expressions

for friction at each toe (as opposed to at the hip or body, Fig. 1.3b,e), generalizes across all contact

conditions (as opposed to the walking model which must be separately instantiated in each mode,

Fig. 1.3d), and with far fewer states and constraints than the more general problem (Fig. 1.3c).

Contrary to the oft encountered adage, locomotion is not the same as manipulation. To any

reasonable level of precision, a legged robot is not moving the world with its feet (i.e. the “object”

is Earth,8 Fig. 1.3a, [10, 160]), nor is the world moving the robot (i.e. grounded legs reaching up

and manipulating the robot Fig. 1.3e, [187]). In particular there are three main differences between

the usual manipulation formulation and the self-manipulation setting: the robot is the object (and

so the “Palm” and “Object” frames are coincident, as in Fig. 4.1); we are concerned with motion

of the robot and not what the robot is touching (and so the grasp map must be composed with an

appropriate reflection); and the dynamics of the legs and body are not decoupled (so in particular

the mass matrix is no longer block diagonal, complicating the dynamics). Why bother following a

manipulation formulation if the problems are actually different? While not every result carries over

exactly, the problems are similar enough that matching as closely as possible the modeling decisions

that have emerged from this very successful and mature body of work facilitates the reuse, or slightly

modified extension, of several valuable ideas and results (e.g. rolling contact [30, 97, 131, 147, 151],

Section 4.1.6).

Physical Assumptions

This section gives a brief introduction to the physics problems and models used in this thesis, and

list a few key references. For a much more complete bibliography of such issues see e.g. [19, 56].

This thesis models self–manipulation systems (and, by analogy, manipulation) using a hybrid

systems paradigm, detailed in Section 5.2, which will assume instantaneous transitions (as opposed

to a continuous contact or compliant contact model [56]). The class of hybrid systems considered

8“The planet Earth’s radius and mass are R0 and M0,” [10].
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in Section 5.2 are formally a specialization of the hybrid automaton of [113, Definition II.1]. In the

dynamics of self–manipulation, the dimension of distinct domains varies depending on the num-

ber of active constraints (and hence generally varies between domains), and the codimension of

a guarded event corresponds to the number of distinct mechanical contacts established or broken

through its activation (and hence generally can be arbitrary depending on the number of independent

constraints in the system).

The hybrid system uses the active contact constraints to define the discrete state [19, 78, 112].

Note that persistence of contact is merely a modeling assumption that usefully describes the intuitive

notion of bodies touching for some finite amount of time. However even when starting with a

simple Lagrangian hybrid system without persistent contact states it appears to be useful to add

such states to allow executions to continue beyond a Zeno equilibrium [1, 138]. In contrast to

the formulation presented here, it is possible (and can be computationally efficient) to instead use

a “time–stepping” or “impulse–based” method which accounts for contact interactions only using

impulses by integrating applied forces over small time–steps [3, 130, 168]. These methods allow

contact constraints to be added or removed at any time–step, but only once per time–step. This is an

advantage as it is one way to avoid both Zeno phenomena as well as other apparent contradictions

between forces and impulses that can arise (as described below), but at the cost of persistence of

contact, one of the simplifying modeling assumptions of interest in this thesis.

Any formulation that allows for persistent contact must decide which contacts to make active

and which to remove9. When there is no impulse (i.e. no constraint to add, but one or more

constraints have violated the unilateral constraint cone), the removal process has been commonly

modeled by a complementarity problem on the contact force and separating acceleration, where in

the simplest case of a single contact point with zero or negative contact force it is simply removed.

This complementarity problem is well formed for rigid bodies, though it does raise certain paradox-

ical consequences for deformable bodies [33]. When there is an impulse induced from one or more

contact constraint becoming active, other constraints might have to be removed if they would require

9The removal ends up being the harder question, as “there is no problem in deciding when and which constraint to

add to the active set since there is a constraint function to base the decision on. The problem of dropping constraints is

more delicate...” [112, p. 283].
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a negative impulse to remain. When invoked as a modeling principle, complementarity precludes

the pairing of contact induced impulses with separation velocities.The complementarity conditions

lead to a unique solution for plastic frictionless impact [41, 42, 71, 80, 172]. Unfortunately fur-

ther generalizations can lead to inconsistencies and ambiguities [33, 78, 157]. The existence and

uniqueness of a solution will therefore have to be separately established by each physical circum-

stance that brings friction into play in a plastic impact model — or merely be assumed. For instance,

for the physical circumstances assumed in Sections 4.1.11 and 5.1.5, there is no conflict, as all con-

tact points with friction are attached only to massless links. However, massless legs introduce new

problems into the complementarity problem.

The massless leg condition in general, as introduced in Section 4.1.9 and 5.1.1, and also used

in countless prior works (e.g. [15, 57, 95]), allows for the neglect of certain states deemed inconse-

quential to the dynamics of interest when unconstrained (of course, the appropriateness of this ne-

glect is task dependent rather than in any way intrinsic to the underlying physics, c.f. Section 4.3.3

or [7]). Indeed a massless leg that is not touching the ground is unconstrained and its position can

be taken as arbitrary (or regarded as evolving according to dynamics sufficiently decoupled as to

be considered independent), as used in the behavior analysis in Section 4.3.3. However the com-

plementarity condition as listed in e.g. [172] is ill–posed in the absence of mass since there is no

well–defined separation velocity (and therefore nothing precluding all massless contact points from

always separating). In Section 5.1.3 we propose the alternate condition that were it to maintain

contact it would have had a negative force, and prove in Theorems 5.5–5.6 that this is equivalent to

the usual complementarity condition when the inertia tensor is non-singular.

The usual Newtonian impact law (as in [35, Eqn. 3], [48, Eqn. 11.65] and many others) involves

inversion of the inertia tensor, which would preclude the possibility of massless limbs. Therefore

in Section 5.1.2 we rework the usual law to use the mass-weighted left inverse (defined in Sec-

tion 5.1.1) which simplifies and generalizes the impact law definition for singular mass matrices.

Even if there are no truly massless links, a nearly massless body segment will yield a poorly–

conditioned inertia tensor (leading to similar formulations for continuous time dynamics used in

e.g. [72, Sec. 4.3] [48, Eqn. 3.17]). We prove in Theorem 5.3 that the impulse we compute is con-
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sistent with the result obtained from the usual formula in the limiting case as some subset of segment

masses tend to zero. This plastic impact law can be thought of as a mass-orthogonal projection onto

the constraint manifold as used in e.g. augmented Lagrangian techniques [9, Eqn. 25].

In this thesis we will restrict our attention to systems modeled as exhibiting only perfectly plastic

impact. This avoids certain inconsistencies, but more importantly we claim plastic impact provides

a more useful model of the robotic systems of interest. Elastic impact is clearly needed in some

robotics applications such as juggling [22, 156], tapping [76] or ping-pong [2], but plastic impact,

where there is no restitution and therefore no separation velocity after impact, is a more desirable

model for most forms of locomotion (when it is important to keep ones feet on the ground) [34,

182] and manipulation (when it is important to keep one’s fingers on the object) [34, 177].

Impulses arising from impacts (both plastic and elastic) generally break existing contacts. For

example an impulse imparted to the underside of a rigid block resting on the ground in a gravi-

tational field must cause it to leave the ground for a small time interval no matter how weak the

impulse or how massive the block. In truth the block is not rigid and the impulse is temporally

distributed; modeling the resulting subtle deflections would greatly complicate the model. Instead

we propose in Section 5.1.4 an additive pseudo–impulse that approximates the work performed by

gravity and other continuous–time forces over a short time interval, used only in determining which

contacts to break. The pseudo–impulse eliminates certain Zeno executions by allowing the system

to transition to a constrained mode after finitely many transitions, as in [1, 138]. In addition the

pseudo–impulse eliminates other other evidently unwanted transitions, such as the example of the

simple block that lifts off the ground. It allows the system to seamlessly transition from what might

be considered quasi–static to dynamic operating regime. In the example of the rigid block, with this

pseudo–impulse there is now a minimum threshold on impulse magnitude below which the system

may be considered quasi–static and the block remains on the ground, but above which the system

dynamics are important and the block detaches from the substrate. A different approach to consid-

ering such forces has been to determine a variable coefficient of restitution [145] (while here there

is no restitution at all and the pseudo–impulse will not be actually applied to the system). A similar

effect is also seen for impulse–based simulations [3, 130, 168], which always consider forces over

19



small but finite time–steps. Under these time–stepping schemes the magnitude of this effect is not

an independent parameter as it will be proportional to the small duration of a single time–step. Fur-

thermore we believe the explicit introduction of the pseudo–impulse here will afford a much clearer

hybrid systems formalism.

While Section 5.1 focuses on the impact problem, which friction greatly complicates [96, 136,

170, 176, 177], even simulating the continuous–time dynamics of rigid bodies with friction can be

difficult (formally NP–hard [8]) due to the possibility of “jamming” events [47, 123], first attributed

to Painlevé [141]. In this thesis strong assumptions about frictional contact enable integration of

the dynamics as a DAE (as opposed to the implicit time–stepping approach pursued in [3, 130,

168]). Though we have maintained those assumptions through most of the thesis, in Section 5.1.5

we show examples where this assumption is a poor model of the physics and propose an extension

that allow the toes to slip while still avoiding these jamming problems. The hybrid system defined

in Section 5.2 is written so as to allow for contact points that can stick or slip. For more general

systems (in particular those that are not well modeled by the assumptions of Section 5.1.5) this

problem can be solved by allowing impulses at times without collisions, with such jamming events

considered an extension of the guards and reset maps presented here; see also “Is Painlevé a real

obstacle?” [19, Sec. 8.1].
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Chapter 2

Actuators

2.1 Motor Selection

Motor sizing for legged robots poses challenges distinct from those presented in most other systems

that perform mechanical work. Traditional methods [94], involve selecting an actuator with an

appropriate power rating geared to work on a load specified at one or a very few fixed operating

setpoints (paired speed torque operating values). For example in order to select a motor for an

industrial robot arm, the maximum weight of the payload will dictate the required torque, which

when combined with the desired speed of operation will provide a set operating point, whereupon

the choice of a motor (and gearbox) that can meet this demand is straightforward.

As suggested by Figure 2.1, systems required to deliver multiple or more complex work loops

will not present the designer a single operating setpoint. For example, the robotic tail task [92], to be

discussed further in Section 2.1.1, does not entail any particular minimum torque specification (e.g.

as might be required were there a need to work against gravity), but, instead, imposes an overall

completion time for repositioning a specified inertial load, in a manner most succinctly expressed

by a dynamical control problem whose solution imposes a non-trivial functional constraint on the

motor parameters. In the somewhat more complex problem setting of vertical running [44, 171], the

imposition of a target task dynamics conferred by an identified template [52] provides a dynamical

work-loop specification. It can be shown that these dynamics offer a precise enough task specifica-
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Simple Complex

Fixed Setpoint Single Task Multiple Tasks

Industrial Inertial Climbing Canid [65] RHex [55]

Arm [94] Tail [92] Task [44]

Figure 2.1: A summary of motor selection techniques with some example domains.

tion as to imply the necessity of additional passive dynamical elements in the power train mitigating

peak power requirements otherwise unachievable by any COTS actuator [114]. In such settings,

task specification via target dynamics (typically along with various problem-specific constraints)

still yields a tractable design problem, affording direct comparison of the relative performance on

some task metric of very different motors by relaxing the requirement that they all complete the task

in the same way (i.e., via some artificially imposed trajectory on the speed-torque plane) [44].

However versatile robots such as RHex are from their very inception intended to perform dif-

ferent tasks at different times. Balancing the performance requirements and constraints of multiple

tasks performed in a variety of operational environments precludes using either the fixed setpoint or

single dynamical task specification methods. RHex [154] must actuate its limbs over an unusually

wide operational range, including slow speed activities requiring large leg torques, such as clam-

bering over rocks and climbing stairs, as well as high speed activities with moderate torques, like

running at high speeds or walking with high duty factor gaits, all without overheating [44, 55, 88,

129]. There are few non-robotics applications in which a motor operates at both its stall torque and

its no-load speed within a short period of time. This spectrum of motor selection tasks is summa-

rized in Figure 2.1. The next two subsections will work through the motor selection process for both

a single task domain, adding a tail, and then for a multiple-task domain, the leg motors in X-RHex.

2.1.1 Motor Selection for a Tail

Adding an inertial tail to RHex could enable a variety of new behaviors, however here the focus will

be on reorientation in free-fall. The tail created for RHex [92] is an appropriately scaled approxi-

mation to that of Tailbot [32], both comprising an approximate point-mass made of brass at about
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Figure 2.2: XRL [65] with a new tail, and with approximately sized image of Tailbot [32, 108]. This

figure originally appeared in [92] is included here courtesy of Tom Libby and Ryan Knopf.

1/10th body mass, attached to a carbon fiber tube of about one body length, as seen in Figure 2.2.

While Tailbot was a special-built machine, the tail for RHex must be added to an existing platform

as a modular payload [65], and as such the range of motion is significantly lower than Tailbot’s,

especially given a safety margin to avoid collision with the body. To compensate, the RHex tail

design targets a slightly higher effectiveness ε = 1.29 (this is the ratio of tail to body rotation [92])

so as to afford the same 90◦ body correction capability as Tailbot.

To mitigate the integration task, both Tailbot’s and XRLs tail actuators were for simplicity cho-

sen to be the same as their wheel/leg motors. But to maximize the performance of the tail, a more

careful study is warranted. In the spirit of [44], we can define a single dynamical task and a number

of performance metrics, and then calculate the optimal performance of all available motors [124].

In that paper, the optimal gear ratio was calculated via numerical optimization on one performance

metric — here we find an analytical solution1. The power, P, is given for each motor and we now

1Anecdotally, having this analytical solution to the gear ratio reduced the simulation time for all 1,546 motors con-

sidered from 171s to 0.175s.
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seek to determine the minimal completion time, t, (parametrized by morphology) for a rotation θ0

as a function of power rather than the inverse (to find the minimum power needed to complete a

rotation in a fixed time). The optimal no load speed, ωm, (a proxy for gear ratio) and resulting

completion time, t, functions are (see [93] for full derivation),

ωm =

(
kωθ0P

Ib

(
1+

1

ε

)2
)1/3

; t =

(
ktθ

2
0 Ib

P

(
1+

1

ε

))1/3

. (1)

where Ib is the body inertia, and the constants kω ≈ 3.156, kt ≈ 1.547. Other metrics to consider

are physical (size, mass), electrical (current and voltage available), and thermal. The thermal cost

of a tail for inertial self-righting is in general small due to the very small time scales, however some

motors may still overheat (see below for more detailed thermal modeling). Now, following [44],

whose numerical optimization step does not require the restriction to the linear dynamics used to

derive (1) and which can incorporate these additional metrics, the performance of all commercial

motors [124] can be compared. Out of the 1,546 motors considered, 82 of them met the length

(< 30mm), weight (< 200g), and minimum completion time (< 0.5s) constraints. Of those, the

chosen motor was the third fastest, only 22% slower than what would be the optimal motor. The

optimal gear ratio for our motor would be 27:1, the 28:1 gear ratio used is the closest commercially

available2.

As an empirical validation of design (including the motor selection), we conducted a series of

initial tests (Figure 2.3) to see how large a body rotation can be achieved by a relative tail rotation of

about 155◦, which is limited by geometry. The robot was dropped nose first from a height of 1.36m

(over 8 times the standing height and 2.7 times the body length). The body angle was measured

from an IMU and regulated to horizontal by a simple PD controller. The motor was able to rotate

the tail, and the robot, in 0.35 seconds to within 5◦ of level, or just more than one body length

of fall, and maintain that with no more than 4◦ overshoot. This test used the entire 155◦ range of

relative tail motion, rotating the body a maximum of 89.7◦ before hitting the hard stop. From these

two final positions we can calculate an average εn = 1.38, which matches our approximate estimate

2This analysis could be made more accurate by considering a current limit and more complicated controller.
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Figure 2.3: XRL self-righting in a fall.

Figure 2.4: XRL surviving a run off a cliff outdoors.

of ε = 1.29 to within 7% and is reasonable considering the errors involved in measuring inertia [148]

and manufacturing. As a comparison, the robot was also dropped with no tail activation, causing

the front two legs to snap as well as some minor internal damage. Thus if the robot tasks requires

a fall from this height, it is definitely survivable assuming it successfully reorients to land within

about 5◦ of level3.

To demonstrate this new ability for XRL in a practical task, the second set of experiments was

conducted outdoors, running along and then away from a 62 cm (3.8 times the hip height or 1.2

body-length) cliff. The robot’s inertial sensors detect the cliff upon initial body pitch, then actuate

the tail according to the previously described closed loop control policy, and the robot lands on its

feet (Figure 2.4). Another test with XRL running from a cliff with a passive tail confirmed that it

would land nose first.

3This is an empirical bound still subject to further tests.
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2.1.2 Motor Selection for X-RHex

Our most reliable understanding of a RHex-like machine’s motor operating regime comes from

Research RHex data. While our ongoing research entails the development of more advanced sim-

ulation and analytical tools for motor sizing in these multiple-task applications, we have chosen

motors for X-RHex based on empirical data from Research RHex.

Our first significant design decision was to support brushless motors. The principal downside

to brushless technology is the complexity of controlling these motors [117]. The commercial motor

controller boards described in [55], however, manage most aspects of brushless motor commutation

and control, and provide an extensive API, trading the cost of design effort and hardware complexity

for the effort of learning how to effectively use the manufacturer’s motor control interface. While the

efficiency and service life benefits of brushless motors are often touted [117], the primary advantage,

for our application, is the option to use high-torque, flat “pancake-style” brushless motors offered by

Maxon Motors4, as seen in Figure 2.5. Inverting the design of most “pencil” motors, these pancake

motors consist of an internal stator containing the windings, surrounded by a rotor containing a

permanent magnet ring. The rotor is part of the back of the motor and is exposed while spinning.

Because of the large rotor diameter, the motors are very short and light (110g, less than half the

mass of an equivalently powerful pencil motor), though with a slower mechanical time constant due

to the increased rotor inertia. The small footprint and tiny mass of these motors is overwhelmingly

appealing in a mobile robotics application, and, following team experience with RiSE V3 [63],

provided us with perhaps the strongest incentive to support brushless technology.

Within the pancake form factor, there are a number of motor options. We limited our choice to

those nominally specified to deliver 50W, exceeding the Research RHex motor power specification

(20W) by more than a factor of 2. In the computation of motor parameters, care was taken on a

number of points: first, given parameters for each motor were compensated based on our battery

voltage, as each motor is specified relative to a given nominal voltage, while X-RHex’s electrical

system was designed around a 37V battery. Therefore, we recompute relevant motor parameters

4Maxon provides a collection of motors in finely grained size and power increments; we have not encountered other

manufacturers with similarly comprehensive options at the scales and quality of interest to us.
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Figure 2.5: A disassembled view of the brushless motor. This figure originally appeared in [55] is

included here courtesy of Ryan Knopf.

using a voltage of 37V, using the standard linear motor model as presented in [144]. Using a volt-

age different from the nominal voltage specified by Maxon in their product line documentation

affects the computation of a motor’s apparent stall torque and no-load speed, though not the mo-

tor’s maximum continuous torque, which is governed purely by the thermal influence of current

running through the motor. Second, our motor controllers limit peak instantaneous motor current

to 20A. However, with the 37V supply on X-RHex, some motors are capable of drawing more than

20A at low speeds. Thus, we also denote an “Achievable Stall Torque,” the torque that corresponds

to the controller’s maximum current output. Our chosen motor dramatically exceeds the Research

RHex motor in its achievable stall torque (670mNm vs 257mNm) and maximum continuous torque

(83.1mNm vs 26.7mNm), though it has a slightly lower no-load speed (10314rpm vs 13600rpm). In

principle, the X-RHex motor is capable of much higher power output than its predecessor. However,

motor thermal constraints pose real operational limitations and are harder to assess without a spec-

ification of the target task domain. We discuss thermal behavior in greater detail in Section 2.1.3.

The parameters for our chosen motor are shown next to those of Research RHex in Table 2.1.

Nearly as important as the selection of the motor is the selection of a gearbox to accompany it.
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Attribute Research RHex Motor X-RHex Motor

Type Brushed DC Brushless

Maxon Part Number 118752 251601

Battery voltage (V) 24 37

No load speed (rpm) 13600 10314

Achievable stall torque (mNm) 245 670

Continuously sustainable torque (mNm) 23.1 83.1

Mechanical Time Constant (ms) 4.28 11.8

Length (mm) 54.5 20.9

Width (mm) 25 45

Mass (g) 130 110

Table 2.1: Motor Comparison

We initially chose an 18:1 gearbox as this results in dramatic, across-the-board improvements to the

speed and torque capabilities of the motor/gearbox combination in X-RHex when compared to those

used in Research RHex, despite boasting a slightly lower total mass (see Table 2.2 and Figure 2.6a).

However, when tested in X-RHex, we found that we had to restrict motor current to each motor to

9A for thermal safety (see Section 2.1.3 for a further discussion of thermal considerations). This

resulted in the torque and power characteristics in Figure 2.6b. Notably, restricting the X-RHex

motor to 9A results in substantially lower torque and power output capacity than Research RHex at

low operating speeds. This handicap manifested itself during high-torque, slow speed maneuvers

such as standing up or turning in place. In order to boost torque and shift peak power output to

lower speeds, we switched to a 28:1 gearbox with an identical form factor. The properties of the

same motor with this gearbox are also depicted in Figure 2.6. The increased gear ratio ensures

that we are able to supply about the same amount of torque as Research RHex at low speeds and

significantly more torque than Research RHex at moderate speeds, with top speed suffering slightly.

We suspect, owing to the fact that X-RHex can generate larger torques than Research RHex until

very near its no-load speed, that X-RHex will have little trouble matching Research RHex in gait

speed during actual, loaded operational regimes.

The final consideration in choosing a gearbox was ensuring that the mechanical device was

physically capable of withstanding the high-torques generated by X-RHex. Unlike high speed mo-

28



Attribute Research RHex X-RHex 18:1 X-RHex 28:1

Gearbox Type Planetary Planetary Planetary

Maxon Gearbox Part Number 166163 326659 326662

Gear reduction 33:1 18:1 28:1

Peak permissible torque (Nm) 3.4 6 6

Continuously permissible torque (Nm) 2.25 4 4

No load output speed (rpm) 412 557.5 358.39

No load output speed (Hz) 6.86 9.25 5.94

Achievable output stall torque (Nm) 8.1 9.9 15.4

Continuous output torque (Nm) .76 1.2 1.9

Gearbox Mass (g) 162 178 178

Combination Mass (g) 292 288 288

Table 2.2: Motor and Gearbox Combination Comparison

tor applications in which stall torque is rarely reached, we expect X-RHex to be approaching stall

torque with regularity, demanding very large torques from each gearbox. Thus, we chose a “high-

power” gearbox from Maxon’s line. When compared to its ceramic alternative, the high-power

gearbox increased the peak permissible torque output from 3.4Nm to 6Nm and continuously per-

missible torque from 2.25Nm to 4Nm. While our motor, after the gear reduction, is capable of

supplying almost 16Nm of torque in stall (greatly exceeding the 6Nm limit imposed by the gear-

box), our expectation is that, with a modicum of care in current limiting, we may prevent extended

operation at stall and that Maxon’s thresholds will never be thoroughly tested. Indeed, Research

RHex has a similar conundrum: its 8.5Nm stall torque is more than double the 3.4Nm peak torque

output capacity of its gearbox, yet gearboxes are damaged only very infrequently. The design

specifications for the motor and gearbox combinations of Research RHex and X-RHex (with both

gearbox iterations) are given in Table 2.2.

2.1.3 Thermal Considerations for Motor Selection

Power density is one of the most important determinants of dynamic legged locomotive performance

Accordingly, we are strongly motivated to extract maximum power output from whichever motors

we choose. The large amount of electrical power these motors consume causes heat to build up and

29



0 2 4 6 8 10
0

5

10

15

20

Output speed, Hz

T
o
rq

u
e
, 

N
m

 

 

0 2 4 6 8 10
0

100

200

300

400

Output speed, Hz

P
o
w

e
r,

 W

 

 

RHex

X−RHex 18:1

X−RHex 28:1

RHex

X−RHex 18:1

X−RHex 28:1

(a) X-RHex restricted to 20A, Research RHex to

15A. These values correspond to the current lim-

its imposed by the respective motors’ controllers.

0 2 4 6 8 10
0

2

4

6

8

10

Output speed, Hz

T
o
rq

u
e
, 

N
m

 

 

0 2 4 6 8 10
0

50

100

150

200

250

Output speed, Hz

P
o
w

e
r,

 W

 

 

RHex

X−RHex 18:1

X−RHex 28:1

RHex

X−RHex 18:1

X−RHex 28:1

(b) X-RHex restricted to 9A, Research RHex to

15A. The 9A limit placed upon X-RHex is em-

pirically derived; above this limit we find that, in

normal operation, the motors tend to heat up too

quickly.

Figure 2.6: The output torque-speed and power-speed profiles of the three motor/gearbox combi-

nations, for two different current limits. This figure originally appeared in [55] is included here

courtesy of Goran Lynch.

can, if left unchecked, cause the motor coils to overheat and become damaged. However, the core

motor temperature can not be measured directly: to estimate it, we build an observer in the form of

a second-order lumped-element thermal model [45] using parameters given by Maxon [124]. This

model is used both offline, to predict the thermal impact of a given behavior, and online, to mon-

itor motor temperature as the robot is operating. The model is most easily visualized as a circuit

consisting of two capacitors and two resistors, a current source, and a voltage source, as pictured in

Figure 2.7. The capacitors are referred to as “thermal masses” (Cth1 and Cth2), while the resistors

are “thermal resistances” (Rth1 and Rth2)
5. Voltages represent temperatures, while currents denote

the flow of thermal energy. Thermal resistances characterize the impediment to heat transferring

between adjacent thermal masses (in this case, different parts of the motor), while thermal masses

5Maxon specifies two “thermal time constants” (τth1 and τth2) instead of thermal masses; these are just the thermal

resistances multiplied by the thermal masses.
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P= I2Rc

Figure 2.7: The thermal model represented as an equivalent circuit.

indicate the amount of energy that is required to heat up a given motor element. The voltage source

represents the ambient temperature around the motor, which is different from the unchanging refer-

ence temperature represented by ground.

The amount of power lost over the motor coils’ resistance is I2Rc, where I is the motor current

and Rc is the terminal resistance. This heat source is the “input current” to our thermal circuit model.

The continuous current limit given in the datasheet is derived from this model and the maximum

winding temperature of 125◦C.

Combining the thermal resistances with a motor torque constant kM and selected gear ratio G,

we can compute two derived value constants for each motor that we refer to as the “heat coefficient”

for the core and case:

Hcore =
RcRth1

k2MG
2

Hcase =
RcRth2

k2MG
2

Both of these values have units of
◦C

(mNm)2
, and can be thought of as the relative steady-state

temperature rise for a given (squared) torque demand at the output of the gearbox. The first measures

the temperature rise of the motor core relative to the case temperature, while the second is the

temperature rise of the motor case relative to the ambient temperature — to get the temperature rise

of the motor core relative to the ambient simply add the values together. These values along with

the two thermal time constants completely describe the thermal properties of a given motor, and are
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Attribute Research RHex X-RHex 18:1 X-RHex 28:1

Thermal Time Constant Core (s) 12.4 16.7 16.7

Listed Thermal Time Constant Case (s) 910 212 212

Measured Thermal Time Constant Case (s) 551 710 710

Heat Coefficient Core
◦C

(mNm)2
9.9 9.4 3.9

Listed Heat Coefficient Case
◦C

(mNm)2
44.8 8.9 3.7

Measured Heat Coefficient Case
◦C

(mNm)2
17.2 10.2 4.2

Table 2.3: Motor and Gearbox Thermal Comparison

summarized in Table 2.3.

The thermal model can be used to run a simulation of what we expect the motor’s core tem-

perature to be given a certain torque demand. As shown in Figure 2.8, we see that the Research

RHex and X-RHex motors with 18:1 gearbox perform about equally well in the short term, with

the X-RHex motor running a little cooler in the long run. This is due to the fact that they have

similar core thermal constants, and Research RHex has both a higher case heat coefficient and case

time constant. The X-RHex motor with 28:1 gearbox performs significantly better than either. The

efficiencies of the brushless motor in the 18:1 case are almost balanced out by the better thermal

characteristics of a brushed motor. Additionally, the low gear ratio means that the motor needs

to generate more torque (and correspondingly more current) than an identical motor with a larger

gear ratio.

The parameters supplied byMaxon are for a bare motor, and do not take into account the thermal

effect of a gearbox. Since the gearbox is mostly metal and attached directly to the motor’s case, it

acts as a heat sink. To account for this, we conducted a controlled experiment to measure the thermal

mass of the case and thermal resistance between the case and the air, thus assuming that the gearbox

acts as an addition to the case. The gearbox could be represented separately using an additional

thermal mass and thermal resistances, but we chose to employ the simple second order system as it

delivered accurate empirical results during testing. We calculated an estimate for the thermal mass

and resistance and used those parameters for our model. See Figure 2.9 for a comparison of the
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Figure 2.8: Core and Case temperature simulations for a fixed torque demand. Horizontal lines

represent steady state temperature. Note that in the short run, X-RHex with the 18:1 gearbox runs

at approximately the same temperature as Research RHex

experimental and simulation results, and Table 2.3 for the numerical values6. The model fits the

data with an RMS case temperature error of about 1◦C.

There is a significant difference in the way the gearbox attaches to the motor on the brushed

Research RHex motors and brushless X-RHex motors, resulting in substantially divergent thermal

performance. The brushed motor coils are physically connected to the case/gearbox via bearings,

brushes, and output shaft; each of these connections facilitates heat transfer between coils and gear-

box. In contrast, the brushless motor coils on X-RHex are stationary, attached only to a fiberglass

circuit board which acts as a thermal insulator, partially isolating the coils from the gearbox, as

seen in Figure 2.5. As a result, while the gearbox on a brushless motor does act as a heatsink, the

thermal performance improvement is substantially more pronounced when using brushed motors.

Indeed, anecdotally, the gearboxes on Research RHex become much warmer than the gearboxes on

X-RHex, suggesting that they are doing a better job of sinking the heat generated in the coils. The

calculated thermal resistance between the case and ambient for a Research RHex motor is less than

half the thermal resistance listed for a stock motor with no gearbox, while the X-RHex motor had no

improvement because of the poor physical connection to the gearbox. In both cases the calculated

thermal mass of the case was much more than the listed thermal mass of a stock motor. This leads

6Note that the “List” values are for a bare motor as reported by Maxon, while “Measured” were calculated by the

authors and there is a slight discrepancy in some values that can be attributed to differences in methodology
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Figure 2.9: Comparison of measured and estimated case temperatures for three different fixed cur-

rent demands followed by a cooling period (at 3300 seconds).

to the modified τth2 for Research RHex being lower than stock, while for X-RHex it is higher than

stock. These measured parameters were used when generating Figure 2.8.

While X-RHex motors with 18:1 gearboxes operate at slightly lower temperatures than Research

RHex motors when tested on the bench (normalized for a given torque output), they run at higher

temperatures on the robot. This lead us to limit the current to no more than 9A during normal

operations. We are investigating multiple causes of this discrepancy, but the increase in gear ratio

has substantially reduced the temperature of X-RHex motors in normal operation. Our switch from

from an 18:1 to a 28:1 gearbox reduces the rise in motor temperature to achieve a given torque by

60% (as seen by taking the ratio of heat coefficients in the last two columns of Table 2.3).

2.2 Dynamic Motor Modeling

This section describes a software contact-event sensor designed to trigger a legged gait recovery

transition. There are two principal contributions in this section: first, we adapt the traditional control

theoretic framework of deterministic dynamical fault detection and recovery [50] to identify the

need for a transition (as summarized in Figure 2.10); second, we apply topologically informed gait

control policies to achieve a smooth transition to desired gait timings that produce stable locomotion.

In doing so, we take a small but important, novel step toward developing an operational framework

for guarded autonomous legged locomotion in general terrain.
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Figure 2.10: Overview of fault detection, identification, and recovery architecture for a single state

system. See [50]

To achieve this, the measured output (leg position) is compared with estimates generated by

an independent dynamical observer to form a “residual” (error signal) containing clues about how

the physical plant’s behavior departs from modeled expectations to be processed by downstream

diagnostics. These estimates could also have been generated via a dynamic bayes network (as in

[106]), or a particle filter method (as in [102]), or other estimation technique. However the targeted

application domain presents very starkly and characteristically distinctive dynamics that seem well

captured by the simple, deterministic models and well classified by the modest, deterministic finite

state automaton we introduce. Very likely, in settings requiring the classification of many different

terrains the more complex stochastic methods will justify their significantly greater calibration effort

(e.g., selection of priors) and lengthier transients. Such an inquiry lies considerably beyond the

scope of the present study.

In concert with the overall framework of [50] (echoed in [142]), our detector’s residual signal is

passed through a decision logic block for purposes of disturbance identification. For these behaviors,

the decision block takes the form of a hand-designed and hand-coded finite state machine, depicted

in Fig. 2.13. In the longer term, as the range of possible environments broadens and the diversity of

potential fault sources increases, we suspect that automated methods of [150] will be required for

the reliable and robust generation of such decision blocks, and, as mentioned above, it seems likely

that a stochastic formulation may be required [102, 106].

The problem of fault recovery represents a vast, important domain in its own right that is still

relatively unexplored in robotics. Bongard et al [17] compare the sensor-motor signatures of their
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Figure 2.11: Block diagram of leg observer. The estimated angle θ̂ and angular velocity ω̂ are

generated from the same reference angle θd and velocity ωd as the actual leg using a simple model

of the motor and controller.

robot with a physics simulation based upon generated self-models, for purpose of detecting the

design configuration of the robot mechanism. While similar in purpose to our methods, we are

focused upon models in which the implicit physics are simple, rather than making use of accurate

full-body simulation.

2.2.1 Algorithm

A key factor underlying the success of our observer-based sensor is that the dynamical properties

of a RHex leg in flight are extremely simple to model: it is essentially a one degree of freedom

proportional-derivative reference tracking loop, decoupled from all the other degrees of freedom. In

contrast, it is well understood that modeling contact is hard: characterizing a leg’s interaction with

complex substrates lies at the cutting edge of contemporary applied physics research [107], and,

even on simple substrates, modeling the complex Lagrangian mechanics characterizing a robot’s

joints while contacting a surface remains challenging. Thus, our problem formulation establishes

a leg’s swing phase as its nominal operational state to be contrasted with “disturbances” caused by

either ground or obstacle collision, which the subsequent fault logic can then readily classify as

either expected, unexpected, or missing contacts.
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Disturbance Detection

The leg flight model in RHex-style machines takes the particularly simple form7 of a single, de-

coupled, servo motor with estimated state (shaft position, θ̂ , and velocity, ω̂) driven by a linear

estimated error, ê,

ω̂ =
Km

s+Am

ê; θ̂ =
1

s
ω̂ (2)

arising from a proportional-derivative (PD) tracker, 8

ê= êp+ êd ; êp = Kp · (θd − θ̂); êd = Kd · (ωd − ω̂) (3)

excited by the desired reference position, θd , and velocity, ωd , signals issued from the “Buehler

clock” that defines a RHex gait [154]. In addition, as our legs operate in the vertical plane, they are

affected by gravity which we model (instead of trying to cancel actively) by adjoining a third known

“reference error” term, êg, to the tracking controller’s input. Equation 3 is thus replaced by:

ê= êp+ êd + êg; êg = Kg · sin(θ̂ +θg) (4)

where Kg is the magnitude of the effect and θg is the angular offset. Finally, there is a time delay

Tdel at the end to synchronize the observer with the physical plant9. Figure 2.11 depicts the model

just described.

The unknown parameters (Km, Am, Kg, θg, Kd , and Tdel) are calibrated via the Nelder-Mead

algorithm [135] using a hand-tuned starting simplex. The final parameter, Kp, is taken to be the

7The more advanced motor controllers available on X-RHex permit measurement of motor current, and so a slightly

different motor model is used for the stair climbing behavior on X-RHex that incudes estimated current as well as a

current residual.
8 Note that since θd and θ̂ lie on the circle (S1), their difference in Equation 3 is taken to be in the range (−π,π], and

computed by a standard modulus function. Also note that the physical interpretation of the parameters is standard and not

essential to this sections’s central contribution. We discuss how to calibrate these parameters in the following paragraphs.
9 The robot’s distributed control architecture and bus structure incurs a time delay from motherboard (where θd and

ωd are generated) through the network to the local hip controller and then back up to the motherboard where the residuals

are calculated. Since our system is time invariant, we can combine these delays into an overall delay of twice the average

one way network transport time. Our observer outputs are thus held in a buffer for a total of Tdel .
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Figure 2.12: Observer residual contrasted with controller tracking error in both position and velocity

under conditions of Left: free leg swing (no “disturbance” from any ground contact); Right: cyclic

ground contact (one of the disturbances of interest). The abscissas display time in seconds. Green

shading indicates the expected stance phase of the gait.

value used by the higher level controller10. Furthermore, Tdel is taken to be constant across all legs.

For all experiments listed in Section 2.2.2, these parameters were trained on a dataset collected

when the robot was allowed to spin all legs freely and with a standard alternating tripod gait. The

speed of the gait was ramped up over time from approximately 0.6 to 2.5 strides per second.

The outputs of this observer, θ̂ and ω̂ , are compared with the actual achieved angle θ and angu-

lar velocity ω , as reported by the motor-mounted encoder, to form the observer residual vector11:

[
rθ

rω

]
=

[
θ̂ −θ

ω̂ −ω

]
(5)

To test the accuracy of the observer, we collected a second dataset at a moderate speed of one

10 Due to the implementation of the derivative feedback in our controller, Kd had to be calculated
11As with Equation 3, the value θ̂ −θ is taken to lie in the range (−π,π].
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stride per second for 15 seconds. This yielded a median position residual of rθ = 0.0271 radians

(1.59 degrees) and a median velocity residual of rω = 0.4267 rad/s (4.075 rpm) over all six legs.

The maximum residuals were rθ = 0.1038 radians (5.95 degrees) and rω = 3.8857 (37.11 rpm). A

section of this raw data from the first leg is shown in Figure 2.12 for the robot both in the air and

making ground contact. In both figures parts (a) and (b) we plot rθ and in parts (e) and (f) we plot

rω . For comparison, errors calculated from the position and velocity tracking (θd −θ and ωd −ω)

are plotted in parts (b) and (d), respectively. The green shaded portion indicates the nominal stance

phase of the gait.

These plots suggest the significantly greater utility of observer residuals relative to mere con-

troller tracking errors in assessing a leg’s relationship to the ground. Whereas the simple track-

ing errors exhibit sizable and varying excursions even when the leg has no load, the observer

residuals account for the predictable causes of such variation, and only exhibit excursions when

contact conditions change. More specifically, during normal operation, due to the nature of the

proportional-derivative controller, velocity tracking cannot account for abrupt changes in reference

velocity (which the motor cannot perfectly follow), and position tracking must lag as a function of

the commanded and actual speeds. These structural features of the PD error signals are particularly

onerous because they are strongest just at the moments of the putative ground interaction of true in-

terest. The change in gait phase to slow the leg down for stance by definition should happen around

the same time as the touchdown event we are trying to detect. In contrast, these expected dynamical

variations in the normal tracking error are accounted for in the observer, as is evidenced by the low

level of error for both rθ and rω in Figure 2.12a and 2.12e. While both estimated states, θ̂ and ω̂ ,

provide useful information, we have found that using only θ̂ is sufficient for disturbance identifica-

tion.

Disturbance Identification

Given an informative disturbance signal, rθ , we introduce a simple output logic stage to classify

the conditions of interest with respect to an intuitively developed partition of the signal space as

follows. The circle, S1, of leg phase angles is partitioned into four intervals labeled “ground” (G)
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— leg angles that the Buehler clock associates with ground contact by commanding lower ωd —

and “air” (A) — leg angles that the clock associates with free flight by commanding higher ωd

— together with two intermediating phase angles labeled “takeoff” (T) — an interval over which

the transition from low to high ωd is expected to occur — and “landing” (L) — an interval over

which the transition from high to low ωd is expected to occur. Similarly, the circle, S1, of residual

position angle errors is partitioned into three intervals labeled “high” (H) — large residual values

that experience suggests should be expected only in conjunction with stance — “low” (L) — small

residuals associated with typical free flight conditions — and “medium” (M) — a pair of discon-

nected intervals that separate the “low” and “high” intervals. We use these symbols to trigger the

transition of a simple hand-designed FSM with four normal states — stance, possible takeoff, flight,

or possible landing. The FSM includes two additional error states — unexpected disturbance and

missing ground. An unexpected disturbance occurs when rθ increases but the leg is not in a phase

of the gait where it could hit the ground. Missing ground is when rθ does not increase but the leg is

in a phase of the gait where it should have contacted the ground. There is also a minimum lingering

time in each state of the FSM to avoid quick transitions due to noise spikes. The state transition

diagram is depicted in Figure 2.13.

The possible takeoff and possible landing states were added to improve accuracy over a wider

range of gait speeds. For instance the leg may be in a state with θ ∈ T and rθ ∈M but it should not

be construed as having taken off unless at some point in the near future rθ continues to decrease.

In contrast, if rθ goes back up then we should treat the leg as if it is still on the ground. The

possible landing state allows our ground detector to trigger at the medium error level but not declare

a confirmed ground contact unless rθ continues to rise up to the high level.

The ad hoc construction of this diagnostic state machine could surely be improved by recourse

to the more formal methods of supervisory control [150]. However, for this application, we believe

the details of its cell structure and transition logic are less important than the broader design insight

that a sound decision about the nature of the current disturbance must be based on the available

information: θ , ω , rθ , rω , and their evolution in time.
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Figure 2.13: State transition diagram for fault identification.

Disturbance Recovery

Reacting to and recovering from disturbances or damage to limbs during locomotion should be a

strength of multi-legged platforms, given the intuitive understanding that a multitude of legs confers

redundancy. In planning and executing the gait recovery mechanism used here, we build upon prior

work in topological gait classification, analysis, and control [68]. In the stair climbing scenario, the

robot transitions to a different six legged gait that is better suited for climbing stairs, as introduced

in [67]. When the robot accidentally breaks a leg, we signal a gait recovery transition using an

asymmetric five-legged gait for a hexapedal machine, see [87, Section II.C] for more details.

2.2.2 Reactive Behaviors

Wall Avoidance

The first behavior that we have implemented using this software contact detector and disturbance

classifier is a simple wall avoidance algorithm. Instead of whiskers or antennae [43], the robot must

touch the wall with its leg and, upon unexpected disturbance (see Section 2.2.1), back up to turn

away. While not necessarily an efficient solution to any sort of maze problem, this simple, useful

behavior illustrates the reliability of our contact detector for disturbance detection and identification.

In this case disturbance recovery is quite simple. Once the robot knows there is an obstacle in
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Figure 2.14: Overhead plot, in meters, of the center of mass of an EduBot running a wall avoidance

behavior inside a closed rectangular region, using the described method as the only sensing strategy.

The twelve contact points are labeled.

front of it, it must immediately move backwards, turn, and continue on its way. For simplicity of

solution, here the robot always turns right. An overhead plot of this behavior within an enclosed

rectangle seen in Fig. 2.14, recorded using a Vicon motion capture system12. A second experiment

with an available exit is shown in the video attachment to [87].

Stair Climbing

In addition to triggering a maze solving behavior, detecting a disturbance in flight can be used to

aid autonomous stair climbing [86]. In this scenario, the robot uses a laser scanner and a self-

manipulation behavior (analyzed in Section 4.3.2) that varies the pitch of the platform to produce a

2D depth map, which it uses to detect that there is a nearby staircase. As the robot walks towards it,

the exact number of steps before impact is not known as there will always be some odometry error.

Therefore when the robot gets close it uses the disturbance detection to trigger the transition to the

stair climbing gait. Stair climbing is different from the normal walking gait, and so a transition is

needed to the stair climbing gait, as first described in [67]. With the stair disturbance detected and

12http://www.vicon.com/
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Figure 2.15: Transitioning from walking to stair climbing.

identified, the robot is able to recover by using this gait transition in stride and smoothly switch to

climbing the stairwell.

The details on the rest of the autonomous behavior can be found in [86], as well as a full account

of the results. The stair transition using this framework was quite reliable, failing 4 times on the 61

flights of stairs (93% success rate). Some of the failures were in detection and identification, while

others were in the recovery behavior itself (which sometimes failed when the robot was far from

being perpendicular to the stairs).

Leg Fault Recovery

To test the effectiveness of our detection of and recovery from disturbances, we now exhibit be-

havioral strategies on the EduBot machine in which the robot must quickly adapt to dramatically

changed locomotion capabilities.

The robot was rigged with purposefully weakened legs designed to fracture and fall off after

only a few steps. Without disturbance detection, the now five-legged machine naı̈vely continues to

make use of the alternating tripod gait, but does so with dramatically reduced stability. As shown in
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(a) Alternating Tripod Gait with 5 Legs
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(b) Five-legged Crawl Gait

Figure 2.16: Gait comparison using inertial measurements of a robot walking with a missing sixth

leg. For the bottom plot of each, black regions indicate stance. On five legs, the tripod gait loses

stability and impacts the ground, seen by strong impacts in the vertical acceleration. The crawl

gaits retains stability, reduces roll, and induces only small pitching moments. This figure originally

appeared in [87] is included here courtesy of Clark Haynes.

Fig. 2.16a, the machine impacts the ground (chattering in vertical acceleration) during each stride

due to loss of stability, greatly decreasing its locomotive quality.

Upon execution of a transition to a five-legged crawl gait triggered by a missing ground event

using strategies outlined in Sections 2.2.1, the robot is still handicapped with just five legs, seen

in Fig. 2.16b at steady-state behavior, but maintains stability and does not impact the ground. An

example of both the reactive and non-reactive cases is included in the video attachment to [87].

44



Chapter 3

Leaping Transitions

In this chapter we explore the intrinsic vocabulary of a particularly simple transition: the legged

leap on a solid level substrate from a motionless state to some desired aerial apex condition in a

high energy regime, such as the leap onto a ledge in Fig. 3.1.

In Section 3.1, we review some preliminary formal ideas concerning the central object of study, a

two legged sagittal plane hopper, and exhibit the topological space— the “ground reaction complex”

(in this case a simplicial tetrathedron) — over whose variously dimensioned cells the Hamiltonian

flows of its constrained body evolve as directed by the ground reaction forces. This cellular con-

struction indexes in a computationally effective (“grammatical”) manner the realizable sequences

of continuous dynamics that are physically available, providing crucial intuition for hand-designed

behaviors (as suggested by the new capabilities we document) as well as parameterizing the various

sequences of constraints that would be required for any automated method of behavior generation

(i.e. a learning or optimization based approach).

The value of working out the cell adjacency relations in the ground reaction complex is the

resulting catalog it affords of all possible leaps (transitions from the rest state to the fully aerial

state). Presented in Section 3.2, this is shown to take the form of variously triggered hybrid dynamic

transitions between adjacent cells. These cell-labeled sequences of gradually ascending dimensional

flows comprise this hopper’s vocabulary of leaps. In Section 3.3 we document empirically a variety

of the very different terminal aerial phase conditions that can result from these various leaps through
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Figure 3.1: XRL [65] leaping upward onto a 73cm high table, nearly 1.5 times its bodylength.

Frames taken every 100ms from a high speed video.

appropriately coordinated open loop maneuvers implemented on XRL. In Section 3.4 we show how

two different instances of these leaps lead to evidently useful behaviors heretofore unachieved by

a general purpose legged robot1: a two hop vault across a gap 20% wider than the robot’s body

length; and a high jump onto a ledge almost 50% taller than the robot is long.

3.1 Hybrid Dynamics Over the Ground Reaction Complex

A complete model of the dynamics for a robot such as RHex is given in Chapters 4 and 5, and

here we present only that which is needed to motivate the analysis of the leaping behaviors used

in this chapter. We are concerned with a planar rigid body, x ∈ SE(2), possessed of two massless

limbs whose revolute joints θi ∈ Θi := S
1, i ∈ {1,2}, relative to the body are actuated by the motors.

The resulting five degree of freedom kinematic system, q := (θ1,θ2,x) ∈ Q := Θ1×Θ2×SE(2),

is further subject to a set of unilateral constraints, a j(q) ≥ 0, j ∈ I, specified by smooth maps,

a j : Q → R (and an index set, I, that we introduce below), that define the base topological space

and thereby comprise in part the “guard” or “boundary” conditions on the dynamical flows over

the base cells. We will simplify the body contact by assuming two contact points (“front” and

“rear” along the bottom), reducing the possible contact conditions to an enumeration of constraint

1By which we mean a power-autonomous robot without specialized jumping (e.g. [103]) or climbing (e.g. [165])

mechanisms.
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equations over the powerset of P ,

P := {pk,l ∈ R : (k, l) ∈ I := {F,R}×{B,L}}

where {F,R} indexes the “front” or “rear” location and {B,L} indexes the “body” or “leg” terminal.

It now follows that there are 2|I| = 16 different logically possible contact conditions yielding 16

different Lagrangian dynamical systems whose physical features we will specify below.

While compliance in the legs almost certainly helps achieve some of the behaviors documented

here, for the most part the body will follow the rigid linkage path with the springs acting to force the

robot onto that trajectory, and so we will assume rigid legs2. We will assume that the actuators can

deliver the greatest amount of work to the body when they are individually doing the most work they

can on their individual motor shafts. The infinitesimal kinematics of rigid closed kinematic chains

generically accord unequally weighted contribution to the net body wrench (see Section 4.3.1 for

one example). However, none of the closed chains relevant to leaps against the simple level substrate

encounter sign changes in these weights, so actuators might “waste” energy generating internal

forces but will not impart negative work to the body when they are asserting their maximum torque

in the direction of shaft travel3.

We further assume that the actuators are each capable of and are restricted to delivering a con-

stant torque (in either direction) throughout their operation, which is saturated by the motor con-

troller current limit. This, of course, does fly in the face of physical reality [51, 77], and power

limitations are well understood to play a critical role in fast moving legged robot limbs [60, 114].

Fortunately, here much of the action takes place at relatively low limb speeds, and so there is rel-

atively little back EMF to substantially reduce the output torque. For similar reasons, we neglect

damping in the joints and limbs and ignore any other source of energy loss throughout this thesis.

2Though compliance can easily be added back, as in [149] and others.
3 As a motivating extension beyond the scope of this thesis, we do document one instance in Section 3.3.1 where the

compliance in the legs allow for a novel trajectory, where this maximal torque assumption fails.
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3.1.1 The Ground Reaction Complex

In [68] a cell complex [61] was used to index all possible abstract coordination schemes that a

legged machine might undertake and in [70] this cell complex was used to organize the possible

gait transitions and recovery strategies of a quasistatic vertical climbing robot, treating the varying

ground contact conditions experienced along the way as mere “noise” shown to be robustly rejected

by a proper feedback implementation of the coordination controller. Here we explore what is in

some sense the opposite extreme case: we are only interested in characterizing the possible direction

and magnitude of ground reaction forces in consequence of different limb configurations; we are

only interested in the high energy dynamical regime; and we wish to factor out all the inessential

details of interlimb coordination.

Hence, although the kinematic system just introduced has as many as five degrees of freedom,

we now exploit the assumption of massless limbs to introduce a coordination assumption that will

cut away the inessential dimensions with no loss of generality regarding the ground reaction force

interactions of central focus. Namely, we will assume when either limb is free of ground contact that

there is some “mirror law” [20], of the form θi =mi(q), i= 1,2 that the joint actuators track exactly.

Denote by πz the projection onto the second coordinate of some world frame representation of

the body and leg contact points4. Consider the family of constraint equations,

πzpk,l = 0 (k, l) ∈ I j ⊂ 2I

where the subscript, j, on the active-constraint set, I j, indexes each subset of I through a Boolean

string denoting membership (or its absence) respecting the lexicographic ordering of I,(FB,FL,RB,RL)

so that, for example I0111 = {FL,RB,RL}.

With this nomenclature in place we now enumerate all of the 16 possible ground contact con-

ditions that form the base space on which our hybrid system is defined, grouping them into the

following categories according to their common dynamics as follows:

• One state where the body has three degrees of freedom (3-DOF): the aerial state with no

4 We must cut off the “north pole” of the bodys rotational component by always requiring πzpFB < ℓ, where ℓ is the
robot’s bodylength (to ensure each cell is truly contractible as formally required).
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contact I0000 := {}.

• Two 2-DOF states have one end of the robot on the ground sliding I1000,I0010.

• Two 2-DOF states have only one leg is down and there is a 2-link open kinematic chain

I0100,I0001.

• Two 1-DOF states have a leg and the opposite side of the body down in a crank-slider config-

uration I0110,I1001.

• Two 1-DOF states have a leg and the body on the same side down like a single link chain

I1100, I0011.

• One 1-DOF state has both legs down in a four bar linkage I0101.

• One 1-DOF state has the body completely on the ground but still able to slide I1010.

• Four completely constrained states that in general the robot will spend no time in, I1110,I1101,

I1011,I0111.

• One degenerate case that is over-constrained with all possible contacts simultaneously on the

ground, I1111.

These states are illustrated in Fig. 3.2 arranged as a simplicial tetrahedron, with the aerial state in

the interior, the 2-DOF states as the faces, and the 1-DOF states as the edges. The 0-DOF states

are not illustrated but are the vertex points, and the over-constrained system is not depicted as it

represents a degenerate case. Space and time constraints preclude our formal demonstration that

the definitions just introduced yield the topological tetrahedron depicted, but it will suffice for the

reader to merely keep track of the adjacency relations the figure implies.

3.1.2 Hamiltonian Flows

See Chapter 4 for our preferred method of populating (by formal symbolic manipulation) the ex-

act terms in appropriate local coordinates arising in each of the 16 different Lagrangian dynamical
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Figure 3.2: All possible contact states, represented as a tetrahedron, showing adjacency. The interior

volume and bottom face are indicated with arrows.

systems describing the distinctly different contact mechanics associated with each GRC cell. We

simply exhibit here the formal abstract expression from which each specific instance can be system-

atically derived. Define the Lagrangian free variable(s) as y ∈ Y (related by h : Y →Q to the state),

and so the dynamics of ÿ are an unconstrained function of state. For this analysis we will assume

that the body of the robot can slide along the ground with minimal friction, while the leg toes have

enough friction to act as if it were pinned until it reaches the guard condition5.

3.1.3 Hybrid Dynamics

A unified formalism for the representation of hybrid dynamical systems was worked out roughly

two decades ago [18], and a full hybrid system account for RHex is given in Section 5.2. While the

general framework allows for transitions between arbitrary (piecewise) smooth “patches” of state

space, our physical setting restricts transitions to occur only between patches that bear a topological

“incidence” relationship. For this reason, our major focus of effort concerns mapping out and

5There is one exception: where the legs are fighting against each other — in these cases the large internal force does

not necessarily break this friction assumption (as in Section 4.3.1), however in this regime of maximal torque output

it will. Therefore when the motors are commanded with opposite directions, the toes will be assumed to be in sliding

friction.
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systematically exploiting these incidence patterns, and the more general, knotty issues associated

with hybrid systems recedes to the background.

There is a growing literature on hybrid dynamical systems over stratified sets [58, 178], of the

kind we study here that arise from the changing degrees of freedom intrinsic to “regrasped” rigid

body manipulation by limbs or fingers of limited physical extent. Although switches across strata

can be understood and planned at non-zero velocity [79], in this chapter we are concerned with the

truly dynamical regime wherein the timing of actuation is crucial to shepherding effectively a body’s

accumulating kinetic energy through the various transitions. As far as we can determine, the recent

literature concerned with (self-) regrasping in a high kinetic energy regime has focused on planning,

sensing and control of the object capture [53] or self-landing [59, 183] rather than exploring the

many routes from rest toward the high energy aerial phase as we do here. Some exceptions include

consideration of one or a fewmost common routes [5, 158, 161], and one paper [163] that formulates

the space of hybrid system states into a structure, though not a simplicial complex.

In general the robot can transition between any adjacent states. Adjacent states can be found

by either adding a contact (resulting in a loss of one degree of freedom) or removing a contact

(resulting in the addition of one degree of freedom) from the current state contact set. The full set

of all possible transitions can be thought of as the Hasse diagram of I, with generically |I| · 2|I|

directed edges, in this case 64 possible transitions.

These transitions can be categorized as: Control Triggered, by touching a leg to the ground, as in

I1010 →I1101 where the guard condition is the zero of a1010,1101 = θ1−θg for some θg; Sometimes

Control Triggered, for example I0000 → I0100, where the guard condition is a function of height

and pitch and may be positive for all θ (i.e. the set g−1
j,k (0) does not include any configurations

at the point x); State Triggered, but possible based on the dynamics and initial conditions of the

system, such as the takeoff condition I0101 → I0001 and explored in more detail in Section 4.3.3;

Impossible, the transition where the body lifts off the ground with no action as in I1010 → I1000;

and Undesirable, while the robot is certainly capable of a hard landing I0000 → I1000, a behavior

designer may wish to avoid it (and furthermore such transitions may not advance the goal of this

chapter, leaping). Thus the set of transitions which we will consider (i.e. those that are both possible
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Figure 3.3: Logical vs allowable cell transitions over the GRC.

and desireable) is reduced from 64 to only 18, which are shown in Fig. 3.3. Note that 15 of the 16

contact conditions remain (only I1111, the overconstrained case, has been eliminated), but the graph

of possible transitions is not nearly as dense. Note that the resulting directed graph in Fig. 3.3.b

does indeed specify a formal grammar comprising all paths initiated at the root (rest state) which

reach the terminus (flight state) — a vocabulary of legged leaps.

3.2 Open Loop Control of Transitions Across the Ground Reaction

Complex

Here we limit the discussion to leaping transitions, namely transitions that take the robot from

I1010 = {FB,RB} to I0000 = {}. The transitions directly to the two 2-DOF systems adjacent to the

start (I1000 and I0010) are impossible, so a path through one of the ends of this edge is required,

namely the robot must put down either the front or rear leg.

3.2.1 Leg Strategy

The saturated torque assumption yields a binary control input for each leg, pushing forwards + or

backwards −, and the combined leg strategy S ∈ [+,−]× [+,−] on the robot is then specified by an
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ordered pair such as (+,+).

These four distinct control inputs are each capable of exciting a multitude of pathways through

the directed graph of Fig. 3.3, yielding the large variety of leaps we explore empirically in Sec-

tion 3.3. Furthermore, the half circle legs imply that, for the moost part, (+,+) produces a forward

lunge, while (−,−) produces a flip. The rest of this section will focus on (+,+) as an example of

the insight afforded by the grammar of leaps enumerated in (2) – (7), however all four basic strate-

gies (and a representative selection of the varied leaps achievable by suitably coordinating their

relative timing) are documented in the experimental section.

3.2.2 Coordination Timing

Choose as a reference time the touchdown of the front leg, and consider the relative timings of the

other transitions. The second leg will touch down at t2, which is a coordination time, C, that can be

chosen arbitrarily. More complicated leg strategies that depart from the assumptions of Section 4.1

may have a higher dimension coordination timing, and might well explore a slightly richer subgraph

of Fig. 3.3.a than the more restricted leaping grammar we focus on in this chapter. The time of

transition to the air for each leg, t1a and t2a, are implicitly defined based on the Hamiltonian flow and

the liftoff guard condition on the hybrid dynamics, a( f (t)) = 0, which in a deterministic world are

fixed by the choice of jumping strategy S and are a smooth function T : R→ R of the coordination

timingC,

t1a = T S
1a(C); t2a = T S

2a(C) (1)

where in this example t1a = T
(+,+)
1a (t2). A closed form for T is not explicitly needed, but even

without it some basic properties will trivially be true, such as 0< T1a and t2 < T2a.

3.2.3 Transition Paths

Now we can write out all of the possible state transitions for a jump, based on the set of possible

cell transitions described above. The transition path, i.e., the “leap-word”, is an ordered list, and the
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set of words that are possible are thus (with the zero time transition states suppressed, as well as the

always present initial I1010 and final I0000 states),

(I0110,I0010,I0001)⇔ t∗1a < t2 (2)

(I0110,I0101,I0001)⇔ 0< t2 < t∗1a, t1a < t2a (3)

(I0110,I0101,I0100)⇔ 0< t2 < t∗1a, t2a < t1a (4)

(I1001,I0101,I0001)⇔ t∗2a < t2 < 0, t1a < t2a (5)

(I1001,I0101,I0100)⇔ t∗2a < t2 < 0, t2a < t1a (6)

(I1001,I1000,I0001)⇔ t2 < t∗2a (7)

as shown in Fig. 3.3.b. Specific physical parameters may well make some words impossible. For

RHex the front leg tends to lift off the ground first, and so the (4) word is not realizable.

Additionally there can be degenerate “double” transitions that are quite interesting, such as the

basic jump when t2 = 0. The restriction that T1a is strictly greater than zero, and T2a is strictly

greater than t2, along with the fact that for RHex T S
1a(0) 6= T S

2a(0)∀S, eliminates all higher order

degeneracies.

3.3 Experiments

In order to explore various regions of the space of jumping controllers, (S,C), and to test the claim

that the underlying topological construction predicts interesting behavioral consequences, we have

run over 100 trials sampling the space6. Each of the four leg strategies was tested with a sampling of

coordination timing parameter values. As RHex actually has 3 legs in the plane, in these experiments

the “leading” leg was disabled, i.e. the front leg for (+,+), middle leg for (+,−) and (−,+), and

rear leg for (−,−), but we will relax this requirement later.

Here we report on the height, displacement, and pitch at apex7, with the (+,+) case highlighted

in Fig. 3.4, and the remaining cases shown in Fig. 3.5. Full data tables, including additional mea-

surements are available at the end of this chapter in Section 3.5, and the video attachment to [91]

6In order to minimize the effect of battery charge level and other time varying effects, the trial order was randomized

an the batteries were never allowed to fall below 75% of full.
7Recorded with a Vicon Motion System, http://www.vicon.com/
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Figure 3.4: Apex height (black square), displacement (red triangle), and pitch (blue circle) for

(+,+) jumping strategy at various relative leg timings.

shows a selection of behaviors. The top of Fig. 3.4 lists the coordination “word”, (2) – (7), and de-

picts in a graphical cartoon the different paths through the cell complex, with vertical lines marking

approximate transition points8. It is clear that depending on what combinations of these metrics the

task requires, several different regions in this space could be useful.

The repeatability can be quantified by comparing the results of 20 additional (+,+) jumps

(listed in Table 3.1) to a linearly interpolated estimate based on Fig. 3.4. This shows an RMS error

of 4.3 mm in z, 12.4 mm in x, and 1.4◦ in φ .

But beyond demonstrating which control strategies result in what kinds of jumps, this data

clearly shows notable changes near the boundaries between transition paths through the cell com-

plex. For example, the height achieved by the (+,+) strategy has a nearly discontinuous jump just

8Paths start at the triangle, end at the square where they transition to the interior (aerial state), and paths outside the

triangle represent the bottom face. This data was coded by hand from high speed video of each trial. Takeoff ambiguity

is the main reason these transitions are approximate.
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Figure 3.5: Apex height (black square), displacement (red triangle), and pitch (blue circle) for

(−,−), top, (+,−), middle, and (−,+), bottom, jumping strategies at various relative leg timings.

after t2 = 0 — there is a noteworthy advantage in height to letting the front leg start before the rear

leg. A similar jump is also present in the pitch however, which may or may not be a good thing

depending on the task.

Qualitatively, the leaping strategies are quite different. The (+,+) strategy yields mostly a

forward leap, while the (−,−) strategy yields largely a flipping behavior, though for t2 > 0 the

robot does not quite complete the flip and instead lands on its nose. The (+,−) strategy causes

the robot to jump more or less vertically into the air. The (−,+) strategy is mostly a flip, but had

trouble for positive values of t2. In those trials (as well as a couple for (−,−)) the front leg, which

56



is pushing backwards, stretched back along the ground until it hit the middle leg support. Since the

motor was at full torque, the leg stuck to the corner of the frame for a short time. Therefore the front

leg leading jumps in this strategy would benefit from a more subtle controller to avoid this.

3.3.1 Extensions

Here we present some anecdotal results that lie outside the scope of this thesis, however can still be

informed by the methods presented here.

Three Legged Jumps

RHex actually has six legs, and not two. While it is easy to anchor the dynamics to the sagittal plane

by keeping pairs of legs together, that still leaves three legs. Formally, the third leg will increase the

number of hybrid states though not the dimension of the ground reaction complex (which is fixed by

body dynamics). However in rigid, non-singular cases only two legs can actually maintain contact

on the ground at a time.

However with compliance, and when operating near a singularity (such as t2 = 0, a common

occurrence on RHex) it is possible for the three legs to be used, but it may or may not be useful.

Initial tests have shown that in the (+,+) case the third leg can only add about 1cm to the final

height. In contrast, for the (+,−) case including the middle leg (in the − direction) added 7cm to

the apex height, or about a 30% gain in potential energy.

Reversing Strategies

In a rigid system, reversing the direction of force applied by a motor will simply bleed off some

of the energy that is already in the system. However for the compliant half circle legs of RHex,

when the leg is moving forward and therefore on the round half of the leg, reversing the torque9

will sometimes cause the leg to jam and unfold, producing a novel motion. The reverse is not true

— if the leg is pushing backwards it will be on the point of the toe, and reversing the direction will

9A rapid reversal of motor torque requires well hardened electronics with adequate flyback protection, however the

electronics in RHex were designed with this in mind [65].
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usually just lift the leg off of the ground early, or if it did jam simply curl the leg up and slow down

the robot. A less extreme reversal has been used in the past [128] to correct the pitch instability

of pronk, though the role of the compliant legs was not fully understood. Note that this strategy is

taking advantage of the shape change that the compliance allows, but does not recover any energy

stored in the unfolded spring.

Since the principle motivation for leg reversal is pitch stabilization, we have tested a hand tuned

reversing strategy on the (+,+) jump with t2 = 0, as this may be the most used jump on RHex but

does have about 15◦ of unwanted pitch at apex (more by the time the robot lands). In these initial

tests, we have found that in fact stubbing the toe at the end of stroke causes about 20◦ of pitch

correction, albeit at the cost of forward velocity which dropped by 18%. Surprisingly though the

stubbed toe experiments did show a slight (2cm) gain in maximum height, which we attribute in part

the compliant leg being stretched by this behavior, pushing the robot upwards. Overall the reversing

jump had less total energy, but the change in pitch and slight height benefit make it a useful strategy

in certain situations.

3.4 Behaviors

This section applies the preceding catalogue of open loop controllers to the generation of several

useful behaviors.

3.4.1 Leaping Behaviors

There are many cases where the apex state after a jumping transition is inherently useful. In order to

cross a small gap, RHex has previously been shown (but not published) to be capable of crossing a

40cm gap (using the middle and rear legs only). This has been extended to 50.5cm (1 body length)

using the (+,+) strategy and t2 = 0.02, a 26% increase. The backflip has been better studied as a

way to recover a preferred orientation [152], but has always been completed by rolling on the nose

(i.e. never leaving the I1000 = {FB} state), implying an apex height of 27cm (though this work did

not explicitly optimize for apex height). Fig. 3.5 documents the (−,−) leap with t2 =−.02 achiving
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a 48cm apex height (300% of standing height). Because both of these behaviors entail leap-words

virtually identical to that past work, we attribute most of the gains to the substantially improved

hardware of the current generation robot [65].

While the backflips achieve the highest apex, they are pitched nearly vertical at that state.

Fig. 3.5 reveals a new leap excited by the (+,−) strategy achieving a 23cm apex (143% of standing

height) at less than 5◦ pitch. Adding the third pair of legs yields a 30cm apex (nearly 200% of stand-

ing height) at 17◦ pitch. To the best of our knowledge such a near-level vertical leap has never before

been elicited from RHex and represents an immediately beneficial consequence of enumerating the

entire space of dynamic transitions.

3.4.2 Gap Crossing

A variety of compound jumping behaviors benefit significantly from the ability to select a specific

initial leap. For example, several high kinetic energy RHex gaits have relatively small basins which

can be very effectively “prepared” [27] by selecting the apex state from rest via a leap. However,

here, we focus on compound jumps across bigger obstacles than any single leap can afford. Specifi-

cally, a leap-step behavior initiated by a 3 legged (+,+) leap with t2 = 0, achieves a high, near-zero

pitch apex with significant forward velocity when a reversing strategy is used. Followed by a simple

spring-mass stride (with the SLIP parameters adjusted by hand) [72], this leap-step crosses a gap of

60cm (almost 120% of body length), as shown in Fig. 3.6, representing to the best of our knowledge

a 20% gain over the farthest gap jump previously achieved by any general purpose legged robot [23].

3.4.3 Jumping on to a Ledge

Another useful application of jumping is to gain access to a high step or ledge. Past quasi-static

work on a similar robot has allowed the robot to access an incredible 53% of the body length10 [39],

the equivalent of a 27cm step up for XRL. By inspecting the results in Fig. 3.4, it appears that a

(+,+) leaping strategy with a large t2 may be advantageous (i.e. push with the front legs well

10This work used leg length as the scale, however we feel that under these strategies the robot is gaining much more

of an advantage from body length than from leg length.
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Figure 3.6: XRL crossing a 60cm gap. Frames taken every 100ms from a high speed video.

before the rear legs), as it reaches a significant height with some forward velocity and a moderate

pitch. A timing parameter of about t2 = 0.18 was found to be the best, and was capable of lifting

the robot onto a 27cm ledge with either a two or three legged strategy, about the same as the best

quasi-static behavior.

For a compound jump onto a ledge, a leap-step similar to the gap crossing behavior reached

a ledge of 29cm, a slight improvement. However the previous section reveals far higher leaps are

possible, though with significant pitching. This suggests a different compound jump whose initial

leap terminates at a vertically pitched apex that vault the legs above a far higher ledge, with the hope

of grabbing and pulling the robot up onto it during the second stride. A (−,−) leap with t2 = 0.06

achieves such a (nearly vertical) high apex with some net horizontal displacement. This leap-grab,

with no modification, is indeed capable of hooking the robots legs onto a 73cm high table, or 145%

of the body length (450% of leg length), as shown in Fig. 3.1.

The second stride in this compound jump, intended to pull the robot up onto the ledge, is not

easy to achieve in the present open loop setting (see also Figure 6.1 and discussion in Chapter 6).

Absent specialized climbing feet [165], the robot will typically slip off even a coarse-sandpaper-

surfaced ledge, as it tries to gain purchase. Extensive tuning (requiring well over 400 attempts)

finally achieved a successful stride whose properties lie beyond the scope of this thesis (requiring
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leg compliance in extension — the rear legs are nearly completely uncurled — and subtle sliding

interaction), yet likely is encompassed within the more general self-manipulation framework (Chap-

ter 4). To the best of our knowledge, this compound jump enables to robot to climb onto a ledge

higher than that achieved by any previous general purpose legged robot, nearly doubling the best

reported prior effort (53% of body length, or 230% of leg length [39]).

3.5 Parametric Jumping Dataset

This section contains Tables 3.1–3.4 documenting the apex state achieved after performing the leaps

shown in Figure 3.4 and 3.5. The forward leap, (+,+), has been featured in the above alanysis and

so additional test data was collected to provide a more careful sampling of the leg coordination

timing. The reverse jump, (−,−), is typically a backflip and since the robot was often more than

half way through a flip at apex, the motion capture system was unable to continue tracking the robot.

Therefore some velocity entries are missing, and the corresponding apex states should be taken to

be “highest observed.” Also note that the t2 = −0.161 jump pitch reading is erroneous, a review

of the high speed video puts the true pitch at about −90◦. Finally, the t2 = 0.092 and t2 = 0.136

appear to be outliers, which upon review of the high speed video reveals that one of the front legs

(which are pushing before the rear legs, as t2 > 0) got stuck on the frame, as noted above for the

(−,+) strategy. The (−,+) results have similar issues to (−,−), with regards to measurement

during inversion and front legs contacting the frame.
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t2 (s) z (mm) x (mm) φ (deg) ẋ (mm/s) φ̇ (deg/s)

-0.203 175.1 557.4 15.0 1313.6 -77.3

-0.192 168.6 552.6 16.3 1419.9 -67.6

-0.179 158.8 546.6 15.7 1378.1 -14.7

-0.171 154.7 517.2 15.7 1876.2 32.8

-0.162 149.3 490.2 13.7 1780.0 94.1

-0.152 146.5 489.2 14.1 1788.4 84.0

-0.140 141.9 443.6 9.2 2441.7 222.4

-0.128 141.9 430.7 4.6 2049.0 190.7

-0.125 141.0 394.6 -1.0 2112.7 196.3

-0.112 143.7 392.6 -1.2 2088.6 186.5

-0.111 141.4 373.2 -2.5 2086.0 177.8

-0.100 140.7 363.2 -2.5 2085.6 176.9

-0.091 148.4 347.6 -3.1 2007.6 138.1

-0.081 151.3 331.4 -3.1 1981.9 126.1

-0.071 158.0 330.3 -1.3 1941.4 109.2

-0.071 159.1 334.6 -1.9 1945.8 100.6

-0.061 164.8 338.0 2.2 1934.7 107.7

-0.055 170.2 312.2 1.7 1864.6 87.5

-0.041 176.6 330.1 3.7 1856.4 80.6

-0.031 178.5 320.1 6.6 1821.5 79.8

-0.021 189.6 326.7 11.0 1870.2 90.3

-0.010 189.8 311.2 11.7 2402.4 108.4

0.000 199.2 313.7 14.1 1749.4 82.4

0.010 199.5 305.4 16.1 2055.2 106.7

0.020 221.8 343.4 21.8 1803.2 67.8

0.030 250.4 355.1 29.2 1635.0 61.6

0.041 253.2 333.8 31.2 1492.9 41.2

0.051 254.2 334.0 32.0 1423.4 37.3

0.062 258.1 327.3 32.9 1356.1 15.1

0.071 258.6 303.2 32.0 1398.4 69.8

0.081 258.2 311.1 31.2 1338.6 54.7

0.083 261.6 296.6 31.5 1355.4 73.7

0.091 259.9 311.9 31.3 1555.7 61.2

0.111 263.2 322.9 31.6 1346.0 25.9

0.117 262.7 335.9 31.7 1335.7 22.2

0.121 270.5 344.1 33.5 947.2 11.8

0.131 268.4 363.8 32.8 1395.9 4.2

0.141 275.6 377.3 34.1 1441.4 -2.5

0.153 284.8 418.2 36.8 1308.3 0.0

0.158 285.7 440.4 36.6 1550.5 -1.9

0.184 284.7 481.1 36.1 1384.9 -11.4

0.191 280.8 481.1 35.1 1676.0 -28.8

0.201 279.3 503.1 34.5 1703.3 -26.6

0.208 272.5 500.6 32.9 1739.4 -33.1

0.212 272.6 503.4 32.9 1741.6 -33.8

Table 3.1: Apex state for the (+,+) jumps at various relative leg timings, including additional trials

not show in Figure 3.4.
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t2 (s) z (mm) x (mm) φ (deg) ẋ (mm/s) φ̇ (deg/s)

-0.237 351.0 -23.0 -88.6 114.3 -40.5

-0.180 394.8 -8.2 -87.9 61.3 -106.6

-0.161 449.6 -13.7 -219.5 108.9 16.2

-0.139 428.3 -17.2 -84.3 109.1 -203.5

-0.121 441.3 -7.4 -79.4 37.5 -204.2

-0.101 439.5 -26.5 -100.9 145.6 331.6

-0.080 451.2 -33.4 -109.8 117.6 365.6

-0.060 455.0 -47.6 -123.1 * *

-0.041 470.5 -39.7 -128.4 * *

-0.020 479.4 -67.1 -125.8 * *

0.000 471.9 -46.8 -112.4 158.5 254.2

0.000 447.5 -59.1 -104.4 231.0 284.2

0.041 450.8 -141.6 -97.6 409.4 -44.0

0.061 401.9 -147.1 -64.1 553.1 -60.8

0.081 455.6 -182.8 -83.3 653.6 -159.5

0.092 295.9 -179.2 -111.7 868.7 32.2

0.104 422.6 -171.2 -70.3 589.2 -123.1

0.136 293.7 -108.7 -105.6 574.6 14.5

0.141 399.4 -242.7 -67.0 898.1 -221.6

0.180 326.1 -278.5 -55.0 1038.8 -178.0

0.201 288.3 -345.5 -42.4 1547.7 -241.8

Table 3.2: Apex state for the (−,−) jumps at various relative leg timings.
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t2 (s) z (mm) x (mm) φ (deg) ẋ (mm/s) φ̇ (deg/s)

-0.207 179.8 77.5 -14.3 751.5 392.3

-0.182 178.8 69.1 -15.6 844.7 347.6

-0.162 179.3 79.8 -8.8 853.5 314.5

-0.141 186.1 85.1 -7.4 952.8 318.6

-0.117 190.1 83.6 -4.9 751.3 210.4

-0.101 189.4 91.2 -1.5 682.3 152.3

-0.081 208.9 102.3 -2.2 660.9 102.2

-0.061 226.1 115.5 -1.0 670.1 99.1

-0.041 235.1 126.6 -4.8 668.6 51.8

0.000 234.6 206.8 -20.5 679.4 -74.4

0.000 230.9 202.5 -16.9 944.4 -72.3

0.020 230.9 196.4 -20.9 883.9 -108.6

0.040 223.8 185.1 -21.2 848.6 -100.8

0.057 210.0 204.2 -13.2 1067.7 -4.5

0.081 208.1 189.5 -16.3 803.6 -27.8

0.100 202.3 182.7 -25.9 874.4 -69.7

0.121 195.4 189.8 -32.3 969.8 -67.5

0.141 192.4 203.5 -26.0 959.3 -30.5

0.162 191.6 216.2 -20.9 926.0 -11.3

0.177 190.8 212.5 -19.5 854.4 -23.5

0.266 188.7 279.6 -41.5 656.9 2.8

Table 3.3: Apex state for the (+,−) jumps at various relative leg timings.
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t2 (s) z (mm) x (mm) φ (deg) ẋ (mm/s) φ̇ (deg/s)

-0.202 236.7 249.0 -43.0 382.6 -89.9

-0.191 294.0 222.7 -47.3 396.4 -92.1

-0.159 378.9 274.9 -95.1 * *

-0.142 378.8 261.2 -103.0 * *

-0.122 399.4 318.1 -108.3 * *

-0.101 391.8 249.8 -112.2 * *

-0.081 418.2 269.1 -119.9 * *

-0.052 422.9 227.2 -123.3 * *

-0.040 401.5 192.8 -116.0 * *

-0.025 421.3 202.5 -113.0 * *

0.000 378.8 253.9 -119.4 705.1 275.7

0.020 381.8 243.9 -102.7 * *

0.020 405.5 162.1 -100.3 414.6 264.2

0.041 382.2 208.0 -105.8 458.8 258.4

0.081 382.5 97.6 -81.0 282.1 -136.5

0.092 289.1 223.2 -49.4 634.0 39.6

0.105 343.1 141.0 -72.4 546.6 -113.4

0.121 358.9 125.4 -99.6 310.0 130.8

0.161 229.7 -63.5 -19.3 592.9 -134.7

0.185 185.2 -72.9 0.8 389.3 -63.4

0.201 205.1 -15.7 18.3 542.4 -35.6

Table 3.4: Apex state for the (−,+) jumps at various relative leg timings.

65



Chapter 4

Self-Manipulation

The central contribution of this chapter is summarized in a single “master equation” (33), in addition

to the equations and modeling decisions that lead up to it, expressing a rigid robot’s Lagrangian

dynamics together with the constraint forces required to sustain them for any combination of legs

and other body parts contacting rigid ground, such as the notional mechanism in Fig. 4.1. From

the perspective of electromechanical platform design, this model elucidates the role of morphology

and actuator characteristics in promoting or precluding certain desired motions of the body. From

the perspective of behavior design, the model comprises a compact, uniform representation of the

hybrid dynamical control system — the family of state spaces, controlled dynamics over them, and

guard conditions and reset maps determining their adjacency — that must be exercised to achieve

those motions.

The use of this formalism is illustrated with reference to a succession of tasks executed on the

RHex robot wherein the interplay of controlled joint torques, leg contact conditions, and body reac-

tions is particularly heightened by that machine’s very limited actuation. But the model is applicable

to any legged machine, and we are convinced that specific power (W/kg) limitations exhibited by

every available actuation scheme [46, 77, 116] will incur very similar, complex tradeoffs between

various limb strategies for imparting work upon the body. We believe that the body-centric self-

manipulation framework will reveal deeper, more formal results concerning the adjacency relations

between a legged machine’s hybrid dynamics cells with strong behavioral implications, but these
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Figure 4.1: Selected coordinate frames for self-manipulation of a legged robot, where the object

frame O is connected to the world but co-located with the palm frame P on the robot. Figure

adapted from [134, Fig. 5.14]

ideas go beyond the scope of the present chapter and are merely hinted at in the conclusion through

speculative remarks concerning further work presently in progress.

We intend the chapter to be readily accessible to readers acquainted with modern texts on robot

manipulation and control [13, 119, 120, 134, 137, 162]. The modeling principles underlying self-

manipulation are quite general, and as such are presented first in tutorial form. We believe their

value and coherence is best conveyed in the context of a specific robot presented with a variety

of specific tasks, spanning the energetic range from static to quasi-static to dynamic. The RHex

robot is required to first stand in place (with the least possible energy on unknown terrain [88]),

then manipulate itself in that place (while acting as a “tilt-scanning” sensor platform [86, 155])

and finally leap dynamically from that place (to “prepare” [27] various behaviors such as pronk-

ing [128] or gap crossing presented in Chapter 3). The value of this formal method becomes quite

apparent when the great multiplicity, diversity and dynamically varying nature of the contact modes

is considered across these seemingly disparate tasks. The framework generates automatically the

equations of motion for all of them, whose consistent structure differs only in one term (the matrix

A in Eqn. (32)) facilitating not only computational analysis but also formal proofs of the validity or

optimality of behavioral choices, controller design, and robot morphology.
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We illustrate the utility of the self-manipulation formalism through a succession of increasingly

energetic tasks implemented on RHex. The selected behaviors hopefully strike the reader as a plau-

sible and coherent short “episode” of a kind likely to arise within an autonomous missions: the

robot comes to a halt at some location of interest; once there, it actively engages its sensory pay-

load; this new information provokes the sudden determination to leap up and escape that location.

Notwithstanding the intuitively straightforward, even mundane nature of this simple vignette, in

the absence of a systematic formalism along the lines this chapter develops, such a succession of

tasks would present the behavior designer with a diverse (and combinatorially numerous) array of

seemingly unrelated mechatronic and sensorimotor control problems whose common implementa-

tion offers no unifying insight into what properties of the platform might help or hinder the mission.

In contrast, we point out how this general methodology informs and simplifies the analysis of each

of these constituent tasks regarded separately, and affords a unifying framework for analyzing the

performance as a function of platform design parameters (here focused on leg shape [132, 133], but

the formalism makes explicit the role of the various other morphological parameters (e.g., Table 4.2)

in the behavioral consequences).

This chapter is structured as follows: Section 4.1 formalizes the modeling decisions and then

review the quasi-static and dynamic equations of motion. The abstract formalism is instantiated

in Section 4.2 for RHex, providing a concrete example. This model is put to task in Section 4.3,

where the various behaviors are instantiated and analyzed, with specific new design results called

out. Section 4.4 contains additional details and analysis.

4.1 Self-Manipulation

4.1.1 Notation

Table 4.1 summarizes the notation in this section, chosen where possible to match [134]. Denote a

rigid frame B, expressed in the coordinates of rigid frame A (or, equivalently, a rigid transformation

that takes frame A into frame B) gab ∈ Ga := SE(d), where d= 2 for a planar model and d= 3

for a spatial model. In local coordinates a rigid transformation will be written as a vector, for
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a := |n− e| ∈ Z
+ Internal or uncontrolled DOF (4.1.8)

a :Q→ C Base Constraint Function (9)

A : TQ→ TC Velocity Constraint Function (11)

Adgab : TGa → TGb Adjoint transformation from a to b (4.1.1)

Bc,k : T
∗Ck → T ∗Gck Wrench basis at contact (3)

c= dim(C) ∈ Z
+ Number of active contact wrenches (4.1.3)

C : TQ2 → T 2Q Coriolis matrix (30)

Ck ∈ Gc Contact frames (ground aligned) (4.1.3)

Ck ⊂ Gck , C = ΠkCk Space of contact positions (4.1.3)

d ∈ {2,3} Dimension of model (planar or spatial) (4.1.1)

D : TQ→ T 2Q Coriolis & internal dynamics (33)

E : T ∗Q→ T 2Q Applied & external dynamics (33)

e= q− c ∈ Z
+ Unconstrained DOF (4.1.7)

f ∈ T ∗C Contact wrench magnitudes (6)

Fa ∈ T ∗Ga Generalized force (wrench) (4.1.1)

Fk ∈ G f Finger frames (leg aligned) (4.1.3)

gab ∈ Ga := SE(d) Rigid transformation from A to B (4.1.1)

Gs : T
∗C → T ∗Gp Self-manipulation grasp map (15)

h : Y →Q,H := Dh Implicit kinematic mobility function (18), (19)

Jh : TΘ → TC Hand Jacobian (16)

Jss f : TΘ → TGc Finger Jacobians (4.1.5)

K ⊆ Z
+,k= |K| Set of active contact points (1)

L : TQ→ R Lagrangian (28)

Lk ∈ Gl Leg segment frame (leg aligned) (4.1.3)

Ma : T
2Ga → T ∗Ga Mass matrix (25)–(26)

Mk ∈ Gm Motor frames (leg aligned) (4.1.2)

n= dim(Θ) ∈ Z
+ Number of joints (4.1.2)

Table 4.1: Key symbols used throughout this chapter, with Section or Equation of introduction

noted. (Continued on next page)
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N :Q→ T ∗Q Nonlinear forces (gravity) (31)

O ∈ Go, Object frame (coincident with P) (4.1.2)

P ∈ Gp Palm frame (body aligned) (4.1.2)

q= n+d(d+1)/2 ∈ Z
+ Dimension of the combined state (4.1.2)

q ∈ Q := Θ×Go Combined system state (4.1.2)

R ∈ SO(d) Rotation Matrix (4.1.1)

Sk ∈ Gs Leg attachment frames (body aligned) (4.1.2)

T : TQ→ R
+ Kinetic Energy (24)

U : T ∗C → R
k Friction cone (4)

U ⊆ S
1 Range of angles considered (4.1.2)

v ∈ TπG Linear velocity (4.1.1)

V :Q→ R
+ Potential energy (27)

Vs
ab ∈ TGa,V

b
ab ∈ TGb Generalized velocity (twist) (4.1.1)

W ∈ Gw World inertial frame (4.1.2)

x ∈ G Body position and orientation (4.1.2)

xc ∈ C Contact location in the contact basis (5)

y := ψ(q) ∈ Y Lagrangian free variables (4.1.7)

α ∈ R
a Internal force magnitude (22)

ζ ∈ R Height function (4.1.9)

θ ∈ Θ := Un Joint angle vector (4.1.2)

λ ∈ T ∗C Lagrange multipliers (constraint forces) (29)

π : SE(d)→ R
d Projection down to linear components (4.1.1)

τ ∈ T ∗Θ Torque (4.1.1)

ϒ ∈ T ∗Q External forces (including torques) (31)

φ ∈ SO(d) Body Orientation (4.1.2)

ψ :Q→Y,Y := Dψ Lagrangian free variable map (4.1.7)

ω ∈ TSO(d) Angular velocity (4.1.1)

Table 4.1: Key symbols used throughout this chapter, with Section or Equation of introduction

noted. (Continued from previous page)
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example x = [x,y,z,φy,φp,φr]
T , where the Euler angles may be chosen as convenient but here will

be ZYX — Yaw, Pitch, Roll. The group product will be denoted as gab ·gbc. The velocity of frame

B relative to frame A as seen by A is Vs
ab = ġab · g

−1
ab , or in twist coordinates

[ vsab
ωs
ab

]
(the “spatial”

velocity), while the same velocity written in the coordinates of frame B is Vb
ab = g−1

ab · ġab (the

“body” velocity) [134, Section 2.4.2]. A body wrench (generalized force), Fb :=
[
f
τ

]
, is defined

such that work is Vb
a,b ·Fb. An adjoint transformation matrix, Adgab : TGa → TGb, relates the two

expressions of velocity, Vs
ab = AdgabV

b
ab [134, Chapter 2].

Denoting by πx a projection down to the x component, πck a projection to some collection of

components to be defined by the friction conditions as specified below, and the non-subscripted π

the projection from an element of SE(d) (position and orientation) to Rd (position only), we express

the origin of a frame, g, as (e.g. when d= 2) (x,z) = π(g) ∈ π(G)≈ R
2. Similarly let Rab = πRgab

be the rotational component of the rigid transformation, in matrix form. To convert between local

coordinates and twist coordinates, define (e.g. when d= 2), R :=
[
R 0
0 1

]
, so that Vb

ab = RT
abẋ.

4.1.2 Modeling Decisions

This self-manipulation model follows the usual conventions from manipulation [13, 119, 120, 134,

137, 162]: the hand and object are separated at the fingertips; the wrench bases at the fingers (i.e.

the motions that the contact resists) are considered in unison; and (through the separated velocity

constraints of the grasp map and hand Jacobian) dictate the forces and torques on the object and

robot. However since the robot is the object, we set the “Object” frame, O, to be coincident with

the robot’s “Palm” frame, P.

Define the following coordinate frames, as shown in Fig. 4.1 (and corresponding to [134,

Fig. 5.14]). Let P be attached to the COM of the robot body segment, and the object frame, O

be co-located at P, but attached to the world. The usual manipulation problem takes the palm frame

as fixed, and so from the robot’s perspective it appears that the gravitational force is applied to the

movable Earth (the object), and not the other way around. Co-locating the object and palm coor-

dinate frames allows for wrenches and twists that are referenced to that point in the world, and the

robot’s actual motion is simply be the opposite sign (from a ground based observation), as explored
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below. The true world inertial frame, W, is at some unknown but fixed location relative to the

ground, and aligned with gravity. The position of the robot, gwp ∈ SE(d), or x when written in local

coordinates, is part of our state but we strive to not necessarily need to know anything other than

the robot orientation relative to gravity, φ ∈ SO(d).

Each leg attaches at a frame fixed on the robot body, Si for leg i, and for each joint of that leg j a

rotating frame that moves with the motor,Mi, j, at the center of the joint but rotated by θi, j ∈ S
1 about

some joint axis (although it may be convenient to restrict the available angles to θi, j ∈U , for example

U := [-30◦,30◦]). Denote by gsimi, j(θi,1, ...,θi, j) this open-chain kinematic mapping from T
j into the

appropriate rigid group. Define a “leg” frame, Li, j, at the center of mass of link and a “finger” frame,

Fi, at the toe and fixed relative to the final leg segment. The collection of n total joint angles, θ ∈ Θ,

combined with the COM position define our overall state, q= [θ x] ∈Q := Θ×Go ≡ T
n×SE(d),

having dimension q := n+d(d+1)/2.

4.1.3 Contact Conditions

In order to determine which parts of the robot are in contact with the ground we first define a contact

frame, Ci, at each potential contact point (toe or other body part, and located at Fi in the case of a

toe). The contact frame is typically oriented with the z axis pointing into the object, however here

the object being manipulated is the robot. We choose to keep the definition consistent with respect

to the legs, and so the z axis points into the ground (which on flat terrain aligns Ci with W). Note

that body contact under this system simply involves a zero jointed “leg” with an appropriate contact

frame. Section 4.1.6 extends these ideas to rolling contact.

Which contact points are active can be determined by checking the distance to the surface of

the local world, with contact of some sort occurring when that distance is zero [162, Section 27.2]

(the type of contact is specified below). This condition can be reduced to checking the contact

point height, ζci(q) := πz(gciw)− ζ̂ci , for some local terrain height ζ̂ci (where ζ̂ci := 0 for flat level

ground). Call the set of k active contact point indices K, such that,

K := {k|ζck(q)≡ 0}. (1)
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The set can be updated based on the current contact conditions by checking the unilateral constraint

conditions (defined below) on all active contact points and the touchdown conditions on all non-

active contact points, see Chapter 5 for more details on the impulsive switching this entails. The set

of contact conditions for a quasi-static RHex is needed in the analysis of Section 4.3.2 (see Fig. 4.3

— and these boundary conditions are used throughout) however it is important to note that none

of the control algorithms we develop in this chapter require that the robot actually know anything

about their location.

There are a number of different types of contact possible once a contact point is known, for

example RHex has both sliding and non-sliding point contacts (see [120, Table 2-3], [134, Table 5.2]

for a full list of examples). In each contact frame define a subspace consisting of only the degrees of

freedom that friction keeps fixed, Ck ⊆Gck ,k∈K, with a projection (whose expression in coordinates

is a sub-block of the identity matrix), xck := πck(gckw). However the standard grasping analysis

instead focuses on the wrenches that the contact can resist (as is required for the non-holonomic

constraints of rolling contact), and so in that spirit define the wrench basis as the image of the

pullback of πck from the allowable contact wrenches to all possible contact wrenches at a contact

point point [134, Section 5.2.1], Bck : T
∗Ck → T ∗Gck , (written in coordinates, BT

ck
:= Dπck ). The

contact conditions enforce zero motion in these directions as well — giving rise to the familiar dual

pairing,

ẋck = BT
ck
Vb
w,ck

, ẋck ∈ TCk, (2)

Fck = Bck fck , fck ∈ T ∗Ck. (3)

This contact constraint holds only when the contact forces are in some Coulomb friction cone

relating the normal and tangential forces,1

Uk(fck)≥ 0, Uk : T
∗Ck → R

ck , (4)

1The given frame convention for the z axis of Ck means that the normal forces are negative in general, see Appendix

(76), (78).
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[134, Section 5.2.1], [162, Section 27.3], satisfying,

Uk(fa)≥ 0, Uk(fb)≥ 0⇒ Uk(αfa+β fb)≥ 0 ∀α ,β ∈ R
+,

which in the planar case (d=2) is simply a matrix multiplication, Ukfck ≥ 0.

For multi-finger robots, and now multi-legged robots, it is often convenient to deal with the

collection of contact positions (and similarly for twists and wrenches) among all contact points,

xc := (xc1 , ...,xcn) ∈ C := Πk∈KCk, (5)

fc := (fc1 , ..., fcn) ∈ T ∗C, (6)

U(fc) := (U1(fc1), ...,Un(fcn))≥ 0, (7)

where c := dim(C) = ∑k∈K dim(Ck) is the total number of constraints on the system.

4.1.4 Kinematic Loop Closures

The friction holding the contact points in place along some dimensions sets up the following con-

straint functions, expressing the kth contact condition by the equality,

xck =πck(gckw(q)) = πck (gcksk(q) ·gskw(x)) , (8)

(see further discussion in the Appendix Section 4.4.1), motivating the definition of the constraint

function

ak(q) := πck (gckw(q))− x̂ck , (9)

whose zeros, a−1
k [0], comprise the constraint set for some initial contact position x̂ck . Collectively,

the c kinematic constraints are,

0≡ a(q). (10)
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This constraint sets up the initial pitching sensor behavior presented in Section 4.3.2, though this is

quickly extended to include rolling contact as described in Section 4.1.6.

4.1.5 Infinitesimal Kinematics: The Grasp Map and Hand Jacobian

The infinitesimal kinematics over the base constraint (10), relates wrenches and twists between the

body and joints and contacts, through induced tangent constraints. Given a constrained motion,

qa(t) : R → Q, satisfying (10), a ◦ qa ≡ 0, these induced constraints can be given coordinate ex-

pression by differentiating the constraint equation, however by using the fact that the constraint

equation must be true no matter where the world frame is, some of the interdependence is removed.

Therefore we claim that,

d

dt
ak ◦qa ≡ 0⇒ Ak(q)q̇ := [-BT

ck
Adgck fk

Jbsk fk -BT
ck
Adgck pR

T
wp]q̇≡ 0, (11)

where the leg Jacobian Jbsk fk is defined such that, Vb
sk fk

= Jbsk fk(θ)θ̇ . The proof of this claim may

be written out using either a homogeneous representation or a twist representation, as shown in the

Appendix Section 4.4.1. Here instead we show that this equality (11) is equivalent to the standard

manipulation constraint,

Jhθ̇ =GTVb
po, (12)

[134, Eqn. 5.15], typically derived directly in terms of twists by defining the grasp map and hand

Jacobian, and not by differentiating a base constraint (10).

In manipulation literature, the grasp map,G : T ∗C → T ∗Go, takes wrenches at the contact points

(i.e., forces at the contact points), fc ∈ T ∗C to wrenches on the object, Fo ∈ T ∗Go, and its dual, GT ,

acts covariantly, taking body twists of the object, Vo ∈ TGo, to twists at the contact point, ẋc ∈ TC,

all expressed in coordinates as,
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Gfc =Fo GTVb
po = ẋc, (13)

G :=
[
AT
gc1o

Bc1 ... AT
gcno

Bcn

]
, (14)

[134, Section 5.2.2, Fig. 5.15], where G ∈ R
3×c if d= 2, and G ∈ R

6×c if d= 3. As this is a self-

manipulation, Vb
po is the opposite of the body velocity one would normally consider, as it is the

velocity of O, attached to the world. This opposite direction comes from the more general identity,

Vb
po = -AdgopV

b
op, [134, Lemma 2.16] (see Appendix Section 4.4.6 for proof), but in this case the

adjoint matrix is simply identity. Therefore a self-manipulation “grasp” map is defined as,

Gs := -G, GT
s V

b
op = ẋc, Gsfc =Fp (15)

where recall that Vb
op = Vb

wp is the body velocity of P relative to any world coordinate frame, and

Fp is the body wrench.

Next, the hand Jacobian, Jh relates infinitesimal motion at the joints, θ̇ ∈ TΘ to twists at the

contact points, ẋc ∈ TC, and has a dual, the pullback from contact wrenches, fc ∈ T ∗C to hip torques,

τ ∈ T ∗C, all expressed as,

Jhθ̇ = ẋc JTh fc = τ , (16)

[134, Section 5.5.1, Fig. 5.15], where Jh ∈R
n×c. The hand Jacobian definition carries over directly

from manipulation,

Jh :=




BT
c1
Ad−1

gsc1
Jss f1 0 0

0
. . . 0

0 0 BT
cn
Ad−1

gscn
Jss fn


 .

Note that in the case of body contact, the hand Jacobian has a column of all zeros, that is contact

wrenches at that point have no direct projection onto the joint torques (see Appendix Section 4.4.2

for further discussion).
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Combining (13) and (16), and recalling that Vb
op = RT

wpẋ, we see that as claimed in (11),

A(q)q̇=
[
-Jh GT

s R
T
pw

][ θ̇

ẋ

]
=
[
-Jh GT

s

][ θ̇

Vb
op

]
= 0, (17)

asserting that the motion of the contact frames as seen from the robot and the world agree (so long

as the friction constraints hold (7)).

4.1.6 Rolling Contact

Rolling contact, when the contact frame Ck is not fixed relative to either the body or object, can be

treated as a simple extension to the above analysis. At each instant the velocity of the body and joints

is as if the leg was a simple stick leg, with a toe at the point of contact,2 however the evolution of

the contact location is dictated by the relative geometry. The underlying contact velocity constraint

is still correct, as the contact instantaneously cannot move in the constrained direction, however in

general this constraint is non-holonomic [97] (i.e. there is no corresponding base constraint (8)).

Therefore in general the velocity constraint componentsGs and Jh also depend on parameterized

contact coordinates, η , which update as some function of the local geometry [131]. For RHex, the

geometry is simple enough that no extra η parameters are needed (the rolling contact frames can be

described fully by elements of q), and so in the interest of space we direct the reader to [134, Chapter

5.6] for a full derivation (with similar notation) as well as [30, 97, 131]. In addition see [147, 151]

for higher order considerations — for now it is sufficient to note that while the constraint, A (11), is

the same for rolling contact as an equivalent stick leg, Ȧ may not be, and so while quasi-statically

both follow the same trajectory, the dynamics are different in order to account for the changing

constraints. This fact is used for example in Result C.4.

4.1.7 Parameterization of the Closed-Loop Kinematics

In most of the applications settings considered below, given the c constraints (10), it is convenient to

work with a local parameterization of the e = q - c dimensional manifold of remaining mobility. This

2See the Appendix Section 4.4.3 for simple proof for RHex like circular legs.
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amounts to the choice of an implicit function, h :Y →Q, where Y is some convenient open subset of

R
e. To simply answer certain questions about the robot motion in terms of particular components of

q, it is convenient to identify Y with a problem-specific Euclidean submanifold of our generalized

coordinates, i.e. Y := ψ(Q), where, in coordinates, ψ is some fixed linear combination of the

components of q corresponding to the directions of interest in the problem (and often a projection

whose matrix representation is a subcollection of columns from the identify matrix). The tangent

map, Y := Dψ ,Y ∈ R
q×e, results in a combined constraint equation,

[
A 0

Y -Ide

][
q̇

ẏ

]
= 0,

such that the associated implicit function (split into hand and object components),

hh(y) = θ , ho(y) = x, h= (hh,ho) : Y →Q, (18)

is a local immersion — i.e., its Jacobian maps,

θ̇ =Hhẏ, ẋ=Hoẏ, H := Dyh, (19)

H=

[
A

Y

]−1[
0

Ide

]
, (20)

is full rank (never passing through the origin) in both tangent spaces (for some local region in Y). In

this chapter we assume that such a parameterization exists. The matrix inverted in (20) is dimension

q×q, and invertible except at singularities in the kinematics or parameterization. Note that Hh can

be thought of as the instantaneous gear ratios for n independent motor shafts coupled rigidly to an

external output load with e DOF.

This implicit function is used to show that the change of basis in Section 4.3.1 is a good approx-

imation, and again in Section 4.3.2 that Ho can be used to control the pitching rate of the robot.
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4.1.8 Quasi-static Forces and Torques

The wrench due to the gravitational potential field, Fg, is derived from the height ζ : Gp → R in

that potential field and, at static equilibrium, it is exactly balanced by the contact forces through the

grasp map (13),

Gsfc = -Fg. (21)

If the number of DOF in the closed-chain analysis, e, is less than the number of motors, n, there is

some “internal” force components, which lies in the subspace [134, Definition 5.3],

ker(Gs) = Im(fN) := {
a

∑
i=1

αifNi|αi ∈ R}, (22)

that forms the homogeneous solution, i.e. contact wrenches that are internal in that they can perform

no work on the object, where a := n− e.

To invert (21) and determine the contact forces required to balance the external wrench, torque

constraints3 of the form tTi τ = 0, i≤ a must be imposed upon the hip joint torque vector, τ ∈ T ∗Θ,

(16). Pulling back through the infinitesimal kinematics, this now constrains the contact wrench

magnitude vector fc ∈ T ∗C leading to a unique solution of the full rank augmented version of (21)

taking the form,

tTJTh fc = 0, fp :=−

[
Gs

tTJTh

]−1[
Fg

0

]
, (23)

Thus the overall vector of contact wrench magnitudes is,

fc = fp+∑
i

αifNi,

and the internal and external components may be projected back into motor torques through (16).

3 Alternatively a “no internal force” constraint may be encoded as fTN fc = 0 [120], however in general we allow some

internal force to achieve some other goal, such as no internal torque.
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These quasi-static internal and external forces are the key to the reactive standing behavior in

Section 4.3.1, and calculating the torque requirement in the pitching sensor sweep (Section 4.3.2).

4.1.9 Dynamics

This section derives a Lagrangian formulation for the robot dynamics in terms of some local coor-

dinates, arriving at a relationship between q, q̇, and q̈ in (33). We allow for the option of having

massless legs, and so expressions of the dynamics cannot involve directly inverting the mass matrix.

If the body of the robot has mass mb and inertia Ib, and each leg segment may have mass mli and

inertia Ili , then observe that the total kinetic energy is,
4

T =
1

2

[
θ̇T VbT

op

]
M̂

[
θ̇

Vb
op

]
=

1

2
q̇TMq̇, (24)

M̂ :=

[
∑i J

bT
pli
MliJ

b
pli

∑i J
bT
pli
MliAdg−1

pli

∑iAd
T

g−1
pli

MliJ
b
pli

Mb+∑iAd
T

g−1
pli

MliAdg−1
pli

]
, (25)

Mi :=

[
miIdd 0

0 Ii

]
, M :=

[
Idn 0

0 Rwp

]
M̂

[
Idn 0

0 RT
wp

]
(26)

(see Appendix Section 4.4.4 for full derivation) where recall that Jbpli θ̇ = Vb
pli
.

The potential energy depends on the world-referenced height of the body in the gravitational

field, ζo(x), and the configuration-dependent height of each link relative to the body, ζl(θ ,φ),

V (q) = mbgζo(x)+
n

∑
l=1

mlg(ζo(x)+ζl(θ ,φ)). (27)

Using these statements of the kinetic and potential energy, and applying Lagrange’s equations

[134, Eqn. 6.4], [16, Sec. 5.1],

4This “self-manipulation” inertia tensor (25) is much simpler when the legs are taken to be massless, Mli = 0 ⇒

M̂=
[
0 0
0 Mb

]
, and quite different than in manipulation, M̂=

[
∑JTMiJ 0

0 Mb

]
, (as in [134, Eqn. 6.24]), where the extra terms

in (25) arise from the coupling inherent in self-manipulation.
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L(q, q̇) =
1

2
q̇TM(θ ,φ)q̇−V (q) =

1

2

q

∑
i, j=1

Mi jq̇iq̇ j−V (q), (28)

0=
d

dt

∂L

∂ q̇i
−

∂L

∂qi
+ATλ −ϒ, (29)

d

dt

∂L

∂ q̇i
=

d

dt

(
q

∑
i, j=1

Mi jq̇ j

)
=

q

∑
i, j=1

(
Mi jq̈ j+ Ṁi jq̇ j

)
,

∂L

∂qi
=

1

2

q

∑
j,k=1

∂Mk j

∂qi
q̇kq̇ j−

∂V

∂qi
.

The Coriolis terms may be grouped in the usual way,5

Ci j =
1

2

q

∑
k=1

(
∂Mi j

∂qk
+

∂Mik

∂q j

−
∂Mk j

∂qi

)
q̇k, (30)

and the nonlinear (gravitational) and applied forces are,

Ni(θ ,φ) =
∂V

∂qi
, ϒ(τ) =

[
τ

0

]
, (31)

where N depends only on θ and φ as the force due to gravity is position independent. Note that

damping may also be modeled with N, in which case it depends on q̇.

The constraint forces, ATλ , arise from the closed-loop constraint (11), and the contact force

magnitudes must satisfy the friction constraint (7), U(λ )≥ 0.

Rearranging (29) into the familiar form, where note that A is the only term that varies with

contact mode,

M(θ ,φ)q̈+C(θ ,φ , q̇)q̇+N(θ ,φ)+AT (q)λ = ϒ(τ), (32)

the dynamics and the constraints may be combined in a few different ways to solve for q̈ and λ ,

here we choose,

5 The Cmatrix does not have any particular block diagonal structure as was the case in a manipulation problem [134,

Eqn. 6.24]. If the legs are considered massless then C may all be zeros, depending on parameterization.
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[
q̈

λ

]
=

[
M AT

A 0

]−1[
ϒ−N

0

]

︸ ︷︷ ︸
E(θ ,φ ,τ)

−

[
M AT

A 0

]−1[
C

Ȧ

]

︸ ︷︷ ︸
D(θ ,φ ,q̇)

q̇, (33)

where we assume that the inverted matrix in (33) is nonsingular even if M is not (see Appendix

Section 4.4.4).

This formulation of the dynamics is sufficient to determine, for example, that the front leg

always lifts off the ground before the rear leg in a symmetric leap (Section 4.3.3). However it

is convenient to use the parameterization of Section 4.1.7 to separate the free dynamics from the

constraint forces, as shown in the next section.

4.1.10 Reduced Dynamics

Instead of working with the complete dynamics we can instead consider only the e free Lagrangian

variables in y, as introduced above. In this case the dynamics are,

M̃(q)ÿ+ C̃(q,H(q)ẏ)ẏ+ Ñ(q) = ϒ̃, (34)

ÿ= M̃−1(q)
(
ϒ̃− Ñ(q)

)
︸ ︷︷ ︸

Ẽ(q)

−M̃−1(q)C̃(q,H(q)ẏ)︸ ︷︷ ︸
D̃(q,ẏ)

ẏ, (35)

where,

M̃ :=HTMH, C̃ :=HTCH+HTMḢ, (36)

Ñ :=HTN, ϒ̃ :=HTϒ, (37)

(see Appendix Section 4.4.5 for derivation). Note that while the base constraint is a function of

the initial conditions (x̂c), the Jacobian constraint is not, and so any analysis that holds across any

initial conditions needs the full q. Furthermore in general rolling contact requires non-holonomic

constraints, and so h may not exist. Therefore we have left q in explicitly in (35) and write out

the reduced dynamics in terms of both the reduced variables, y, and original variables, q, (although

h(y) may be substituted for q when possible).
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To recover the original configuration space accelerations and Lagrange multipliers,

q̈=Hÿ+ Ḣẏ. (38)

λ = A∗(ϒ−N)︸ ︷︷ ︸
Ẽλ (q)

−A∗(MḢ+CH)︸ ︷︷ ︸
D̃λ (q,ẏ)

ẏ, (39)

where A∗, a left inverse of A, is chosen to also satisfy A∗MH= 0, that is,

[
A∗

(MH)∗

]
:=
[
AT MH

]−1
⇒ A∗AT = Idc, A∗MH= 0, (40)

(see Appendix Section 4.4.5 for derivation).

These reduced dynamics lead to, for example, a simple proof that stubbing the toe at the end of

stance in pronk is beneficial to the robot’s pitch, as described in Section 4.3.3.

4.1.11 Summary of Assumptions

For convenience, the assumptions made by the self-manipulation framework just presented are sum-

marized as follows:

A.1. There is a distinguished (pre-selected) rigid body on the robot with a frame, P, attached at the

COM.

A.2. There is an inertial world frame, W, at some (possibly unknown) fixed location, and at each

instant is rigidly connected to a frame, O, co-located at P.

A.3. The robot is in contact with the world at some finite number of points, Ck, and the set of all

possible contact points is known (albeit, in general, not their location).

A.4. The combined mass matrixM does not need to be full rank (i.e. there may be massless limbs),

however the reduced mass matrix, M̃, is (i.e. any massless links are constrained such that the

overall system motion is well defined).

A.5. Some choice of generalized coordinates, i.e., a non-singular minimal parameterization of the

free motion, y, is available in any mode of interest.

83



θ2

ρ2

ρ1

θ1

φℓ1
ℓ2 x

z

P

O

C2 C1
W

ρb

Figure 4.2: Coordinate frames and key dimensions for RHex under the self-manipulation formula-

tion.

Furthermore the following assumptions are made in this chapter, but not fundamental to the

structure of the framework,

B.1. There are no elastic or compliant components.

B.2. Any damping or air resistance is negligible.

Some additional assumptions are made when this general framework is instantiated in the next

section.

4.2 Self-Manipulation for RHex

4.2.1 Model Parameters

When RHex uses pairs of contralateral legs in phase on level ground, it is very effectively anchored

to the sagittal plane, and so here we develop a planar model for RHex (d:= 2), with only two legs

modeled, each with one joint (n:= 2, q= 5), as shown in Fig. 4.2. In addition the body is allowed

to contact the ground at up to two locations (front and rear), so that k≤ 4. The rubber treads on

the toes have a relatively high coefficient of friction (especially on rough outdoor terrain) that we

assume always resists tangential (sliding) motion, while the hard shell of RHex’s body has a very

low coefficient of friction and so we assume that the body always is able to slide. There are thus 2

contact wrenches at each toe and 1 at the front and rear of the robot, implying that c≤ 6. We do not
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assume that the robot is endowed with any exteroceptive sensors, and as such must assume instead

that the robot is on flat level ground, and so the contact normals are aligned with gravity.

The location and orientation of the various frames are shown in Fig. 4.2. In the palm frame, let

the +x axis be aligned with the robot, +z in the “downward” direction from the robot, and thus +y

exiting the page (this is a standard “North, East, Down” orientation). Hip i (Si) is located ℓi away

from the P frame along the positive x direction, and the leg length is ρi putting the Fi frame at ρi

along the positive z direction fromMi, thus,

gpc1(θ ,φ) := [ ℓ1−ρ1 sinθ1, ρ1 cosθ1, -φ ]
T ,

gpc2(θ ,φ) := [-ℓ2−ρ2 sinθ2, ρ2 cosθ2, -φ ]
T ,

when the leg is supported on its toe (0 ≤ θi−φ < π , as with leg 2 in Fig. 4.2). While the leg is in

rolling contact (as with leg 1 in Fig. 4.2),

gpc1(θ ,φ) := [ ℓ1−
ρ1

2
(sinθ1+ sinφ), ρ1

2
(cosθ1+ cosφ), -φ ]T ,

gpc2(θ ,φ) := [-ℓ2−
ρ2

2
(sinθ2+ sinφ), ρ2

2
(cosθ2+ cosφ), -φ ]T .

The body has semi-circular ends with radius ρb about the hips and so the two potential body contact

points are,

gpc3(θ ,φ) := [ ℓ1−ρb sinφ , ρb cosφ , -φ ]T ,

gpc4(θ ,φ) := [-ℓ2−ρb sinφ , ρb cosφ , -φ ]T .

The body pitch is φ = 0 when the robot is horizontal and a positive pitch when hip 1 is higher

than hip 2. The leg angles are measured as θ1 and θ2 in the clockwise direction from the body +z

direction. In Fig. 4.2, θ1 < 0,θ2 > 0,φ > 0. Physical values used, including lengths and masses, are

summarized in Table 4.2.
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Symbol Value Definition

mb 7.15 kg Body Mass

Ib 0.15 kg·m2 Body Inertia

ml 0.063 kg Leg Mass

Il 0.00046 kg·m2 Leg Inertia

ℓ1, ℓ2 20.5 cm Body-Hip Length

ρ1,ρ2 17 cm Leg Length

ρb 5 cm Body Radius

τs 15 N·m Saturated Maximum Torque

Table 4.2: Physical quantities used in the RHex model. Note that ml , Il , and τs are doubled in

practice as contra-lateral legs are used in parallel in this chapter, though all but the last behavior

assume massless legs.

4.2.2 RHex Kinematics

The definitions of the previous subsection completely describe the kinematics and dynamics of the

robot in any contact configuration. A full list of the resulting matrix formulation of the kinemat-

ics and dynamics is included in the Appendix Section 4.4.7, while here we only look at the base

constraint and explore the quasi-static state space.

From Section 4.1.4, the base kinematic constraint is defined by composing the inverse of the

specified maps for gpck with the body coordinates, x, which for stick legs (0≤ θi−φ < π),

ak(q) = π(gckw(q))− x̂ck =

[
-x− ℓk cos(φ)+ρk sin(θk−φ)
-z+ ℓk sin(φ)−ρk cos(θk−φ)

]
−

[
x̂ck
ẑck

]
, k ∈ {1,2} (41)

while for rolling contact (-π ≤ θi−φ < 0),

ak(q) = π(gckw(q))− x̂ck =

[
-x− ℓk cos(φ)+

ρk

2
sin(θk−φ)

-z+ ℓk sin(φ)−
ρk

2
(1− cos(θk−φ))

]
−

[
x̂ck
ẑck

]
, k ∈ {1,2}. (42)

Similarly for the body contact, the base kinematic map is,

ak(q) = πz(gckw(q))− x̂ck =
[
-z+ ℓk sin(φ)−ρb

]
−
[
ẑck
]
, k ∈ {3,4} (43)

which is the equivalent of setting θk = φ .
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As introduced in Section 4.1.3, the active contact constraints can be found by checking the

height of each potential contact frame, ζck(x). If however the robot does not know its exact place in

the world (π(x)), the contact condition can still be found by relying on the assumptions of flat level

ground and quasi-static operation. First since the robot is quasi-static, choose the world reference

frame to beW ≡ O, and so π(x) = 0. In this case the active contact points are simply those that are

farthest from the body in their z direction, which recall is always non-positive by convention,

πz(gcko)< πz(gcio), ∀k ∈ K, i /∈ K.

To consider the difference between rolling contact (on the rounded part of the half circle leg) and

point contact (on the toe of the leg) a further condition is needed that specifies which part of the leg

are rounded. In particular, the leg presents the rounded half of its shape when -π < θi−φ < 0 (as

opposed to e.g. [74] which is rounded on the other half).

Once contact mode is determined, pitch is an implicit function of the equality of the constraint

(10), 0≡ ack(q). As before, take π(x)≡ 0, and so,

πz(aci)−πz(ac j)≡ 0, ∀i, j ∈ K,

πz(gcio)≡ πz(gc jo), (44)

from which we can locally derive the body pitch as an implicit function of the joint angles. These

conditions are combined to create Fig. 4.3, which shows the various quasi-static contact conditions

across the entire joint space, Θ.

4.2.3 Assumptions for RHex

As a summary, the following assumptions, in addition to those listed in Section 4.1.11, are made

about the RHex model,

C.1. RHex is anchored to the sagittal plane by using contralateral legs together, and so d= 2.

C.2. The middle legs are not used, and so n= 2.
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Figure 4.3: Quasi-static contact modes over the entire state space of joint angles (Θ ≈ T
2). Each

region is distinguished by front and rear contact conditions that can be Body, Rolling, or Toe contact,

as indicated by the respective letter.
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C.3. The body can contact in up to two locations but has a low coefficient of friction that never

resists tangential friction forces.

C.4. The rubber toes have a high coefficient of friction and therefore always resist tangential forces

(as the surface normal and frictional coefficients for novel terrain is unknown — if they are

assumed to be known then the friction cone could be checked with (7)).

C.5. The robot is on flat level ground (Ck aligned with W, assumed everywhere except Sec-

tion 4.3.1).

C.6. The legs are massless (ml ≡ 0, Il ≡ 0, assumed everywhere except Section 4.3.3).

Furthermore the following simplifying assumptions are made in some of the following behaviors

as marked,

D.1. The robot is near a nominally standing posture, i.e. the legs are “under” the robot, θk ∈ U :=

[-30◦,30◦], and the robot is close to level, φ ∈ [-10◦,10◦].

D.2. The robot is symmetric (ℓ1 ≡ ℓ2 := ℓ, ρ1 ≡ ρ2 := ρ , implicitly assumed for numerical calcu-

lations based on Table 4.2).

D.3. The robot is a point mass (Ib ≡ 0).

4.3 Behaviors

4.3.1 Reactive Standing

In this section we document a quasi-static RHex standing controller that delivers up to a 90% re-

duction in power use relative to an open-loop stand on unmodeled rough terrain [88]. The scheme

is extraordinarily simple: the controller seeks simultaneously to reduce the variance of joint torques

around their mean (right side of Fig. 4.4), while fighting to “lean up” against the mean load (left

side of Fig. 4.4). The self-manipulation model is needed to formalize these insights and establish

the correctness of the controller.
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τ1 = τ2 6= 0

τ1 = τ2 = 0

τ1 =−τ2 6= 0

τ1 = τ2 = 0

Figure 4.4: Two examples of how the balancing stand works, noting the relationship between motor

torques. On the left, start and end conditions for fighting an external force, on the right start and end

conditions for relaxing an internal force.

This notion of fighting an external force and relaxing the internal force has been used before on

legged robots, usually without stating it in this way. For example, prior work on RHex pushes the

body uphill to be centered over the legs while climbing steep terrain [64], and separately regulate in-

dividual leg torques such that no one leg pushes harder than the rest [179]. These ideas were further

developed on RiSE [66, 69] whose reactive gait phase adjustments were designed to balance forces

within and between the sides. Similar internal force management strategies have been suggested on

quadrupeds [164] and highly articulated bipeds [159], though without a proof of convergence.

To analyze this behavior, Section 4.3.1 decomposes the motor cost into average and difference

terms, ε and δ , and derive the quasi-static torques necessary to fight external (gravity) and any inter-

nal (legs fighting) wrenches. The key to this decomposition is to apply the closed-loop constraint to

find the internal and external forces at the toes (Section 4.1.8), and projecting that back into motor

torques (Section 4.1.5). Section 4.3.1 sets up the controller summarized in Fig. 4.4, in part by using

an approximation to the closed-loop velocity constraint (Section 4.1.7). Section 4.3.1 brings these

parts all together and show convergence of the controller. This entire behavior is analyzed using

stick legs with point contact, but as Section 4.1.6 has shown, the free motion of rolling contact is

the same as that of a stick leg with appropriate radius, and so by showing Lyapunov convergence for

any angle and any leg lengths (within appropriate bounds), the rolling contact can be ignored. Note

that this proof does not rely on Assumption C.5 but instead simply uses Assumptions C.4 and D.1.
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Finally Section 4.3.1 tests this controller on a variety of indoor and outdoor terrain, with results

documented in Table 4.3.

Problem Setup

For this problem we are trying to minimize the thermal cost needed to stand, which is proportional

to the square of current (which in turn is proportional to torque). A natural goal to set is Π :=

1
2

(
τ2
1 + τ2

2

)
. A key insight is to break apart the functional form of Π = ε(τ1,τ2)+δ (τ1,τ2), where

ε(τ1,τ2) := τ2
m is the squared mean torque, and δ (τ1,τ2) := τ2

d , is the squared difference in torques,

[
τm

τd

]
:= Tτ T :=

[
tTm

tTd

]
=

1

2

[
1 1

1 -1

]
, (45)

and analogously [θm θd ]
T :=Tθ . Section 4.3.1 shows that ε captures the cost due to gravity while

δ captures the cost due to internal forces, and more importantly the proposed controller drives both

costs to zero.

Similarly we may choose to parameterize the implicit function associated with the closed-loop

constraint by the average velocity, with y ≡ θm = tTmθ , i.e. ẏ = Yq̇ := 1
2
[1 1 0 0 0]q̇. This choice is

motivated by the observation that motion has equal cost in both motors, though selection of y≡ θ1

or y ≡ θ2 also works well. The Jacobian of the associated implicit function (19) on some open

neighborhood of the origin, U ⊂ R, is,

Hh := Dθmhh =
2

γ1+ γ2

[
γ1
γ2

]
, (46)

γi := (ℓ1+ ℓ2)ρ j cosθ j+ρ1ρ2 sin(θ2−θ1), j = 3− i, (47)

and is full rank (never passing through the origin) in both tangent spaces as the “gear ratios,” γk,

are always positive and nearly equal (bounded numerically by 0.83≤ γ1/γ2 ≤ 1.19 under Assump-

tion D.1 in [88]).

The “internal” component of the forces at the toes lies in the subspace defined by (22), which

form the homogeneous solution, i.e. toe forces that are internal in that they can perform no work
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on the object. To specify a particular solution, apply (23) with tT ≡ tTd . This choice of particular

solution, depicted in the lower sketches of Fig. 4.4, corresponds to toe forces that cancel gravity

with the “right amount” of internal force, here defined by the difference condition.

The torque produced by these toe forces is given by the hand Jacobian, JTh , as in (16). It is

convenient to work in a new basis for the joint-space torques, τ ∈ T ∗Θ, given by the scaled rota-

tional transformation T into the mean and difference of the torques as defined in (45). The torque

implication of the particular solution (α = 0) is,

[
τm

τd

]

p

:= TJTh fp = -mbgρ1ρ2

ℓ1 cosθ1 sin(θ2-φ)+ ℓ2 cosθ2 sin(θ1-φ)

γ1+ γ2

[
1

0

]
, (48)

where τd,p = 0 because the particular solution has no component in the tTd direction (23). Therefore

all of the virtual work against gravity must show up in τm,p, so that τm,p =
1
2
FT
gHo =

1
2
mbgDζ ◦Dho

(see [88] for proof).

The torque projection of the homogeneous solution is,

[
τm

τd

]

h

:= αTJTh fN =
α

2

[
γ2− γ1

γ2+ γ1

]
. (49)

Here there is not an exact decomposition — we would like τm,h to be zero so that τm is exactly

τm,p. However we have observed (in (47) and related discussion) that γ1 ≈ γ2, and in any case if our

controller is successful we can achieve this by simply canceling the internal force magnitude, α .

Having derived an expression for the various torque components in (48)–(49), we can now apply a

controller to this system and observe the effect on the component cost functions, ε and δ .

Controller Design

In this section, we show how direct current readings at the hips yield intrinsic sensors that ap-

proximate the gradient of two costs, ε and δ , eliminating all need to know or compute the exact

kinematics online. The change of basis in torque space, T, allows the robot to use these sum and

difference torque measurements to closely approximate the gradient of its power-use cost function.
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Because the motor controller is highly overdamped and rate limited we adopt “generalized

damper” mechanics and model the motor as velocity controlled in general, θ̇ = κpθ̃ , for some

command θ̃ ∈ TΘ. To guarantee that the system remains quasi-static, this command is rate limited

to ensure θ̃ ≤ κσ . However the motion is constrained by the closed-loop condition (12), and so the

constrained motion is approximately,

θ̇m = κpθ̃m, (50)

θ̇d = 0, (51)

since the system can move freely in approximately the θm direction (exactly, in the Hh (46) direc-

tion). In contrast, in the approximate θd direction (exactly, along infinitesimal motions orthogonal

to Hh), motion is locked, hence generated torque must increase as,

τ̇d = κt θ̃d , (52)

i.e. any differentially applied command increases the torque as the system cannot move in that

direction.

Again, we emphasize that this locked leg assumption is merely an approximation (as ∂θd/∂θm

is small), but no matter how large the shift, so long as γ > 0 for all angles, i.e. the sign of the

direction of motion is correct, we can simply allow the internal force controller to compensate for

this “disturbance” in θd as the robot moves.6 Moreover this misalignment between the approximate

and true parameterization of the free motion does not affect the zero point — in either case the zero

has τ1 = τ2 = 0 and so the controller converges to the correct place, even if it does not take the

“most direct” route.

Internal and External Cost

Note that the internal cost, δ = τ2
d = α2(γ1+ γ2)

2/4 (49), vanishes if α = 0. Therefore since the

particular solution makes no contribution to τd (48), based on our actuator model (51)–(52), it is

6Without this dependence, the two controllers could be run sequentially.
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straightforward to reduce δ by asserting a control policy, θ̃d := -κdτd , resulting in,

δ̇ = 2τd τ̇d =

{
-2κdκtτ

2
d |θ̃d| ≤ κσ

-2κdκtκσ |τd| |θ̃d|> κσ
. (53)

Thus the positive definite function, δ , has a negative definite derivative along the motions of (52)

under the specified control and, thus, as a Lyapunov function,

Result A.1. Relaxing the difference in torque (53) assures that τd , and therefore the internal cost δ ,

decays to zero from any nominally standing posture (Assumption D.1).

The exponential decay of the homogeneous (internal) torque solution leaves the second term of

the cost function, ε = τ2
m = (τm,p+ τm,h)

2, determined by the gravitational torque field through τm,p

(48), which can be minimized by bringing θm to a critical point of ζo. For φ ∈ U , the closest critical

point is a local maximum. Therefore, we consider minimizing the function -ζo, and implement the

quasi-static dynamics θ̃m := κmτm, since this implies,7

-ζ̇o = -Dζo · θ̇m =

{
-mbgκmκp|Dζo|

2 |θ̃m| ≤ κσ

-κpκσ |Dζo| |θ̃m|> κσ
, (54)

i.e., -ζ0 (a smooth positive definite function in the neighborhood of a maximum), has a negative

definite derivative under the control input as it enters the dynamics (50), and therefore,

Result A.2. Fighting the mean torque (54) assures that θm converges to the local minimum of -ζ0,

the local maximum of ζo, and therefore the external cost ε , decays to zero from any nominally

standing posture (Assumption D.1).

Furthermore, as discussed in Section 4.1.6, since quasi-statically rolling is the same as an equiv-

alent stick leg, and the above proof holds for any leg angle and length so long as γi > 0, we find

that,

Result A.3. The convergence of (53)–(54) holds even under rolling contact, and so either leg shape

converges to near-zero cost.

7The coupling of τm,h adds a sign indefinite term to the top line, -ακmκp
γ2−γ1
2 Dζo, but α is exponentially driven to

zero by (53).
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Figure 4.5: X-RHex performing a reactive stand on rocks.

Thus for this first behavior, either leg shape is acceptable.

Experimental Results

We implement this controller on the robot by straightforward generalization of the difference torque

controller (53), for each leg individually, and the mean torque controller (54), now applied to the

mean of all six legs [88, Section III.D]. The controller was tested on a variety of terrains by having

the robot execute a reactive stand from either a sitting or walking posture. Fig. 4.5 shows a test on

a pile of rocks, and Table 4.3 summarizes the results.

Note that regardless of the initial conditions, the reactive power was reduced to around 4 W. In

fact every trial except for one on the rocks reduced the power to below 5 W. In that outlier, with

a final power usage of 21.2 W, the robot slipped partway through execution of the smart stand,

and, as the current behavior executes for a fixed time, the robot did not have time to completely

recover. Anecdotally, the entire robot can typically be turned off after this behavior runs and the

robot remains standing (implying that the remaining 4 W may came from the control electronics

or noise). Furthermore since the experiments that started from a walk contained a mixture of leg
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Terrain Slope Normal Power Reactive Power Change

Asphalt None 6.02 W 3.64 W 39.6%
Rocks Various 6.32 W 3.73 W 40.1%
Grass -14.0◦ pitch, 11.1◦ roll 5.89 W 4.12 W 30.0%
Grass 1.2◦ pitch, 5.5◦ roll 11.43 W 4.34 W 62.0%
Dirt 18.8-19.9◦ pitch 22.50 W 4.01 W 82.2%

Carpet None 36.63 W 3.97 W 89.2%
Smooth 10.6◦ pitch 15.55 W 3.98 W 74.4%
Rocks Various 31.25 W 7.30 W 76.6%

Table 4.3: Reactive stand power from seated position. Each row is an average of five trials, and idle

(“hotel”) power has been removed. First group started from a sitting posture, second group started

from walking posture.

contact conditions (some legs on the rounded half and some on the toe), these results supports the

claim that both round and stick legs converge to near-zero power under this controller.

4.3.2 Pitching Sensor Sweep

The behavior developed in this section allows the robot to actuate around the pitch component of its

body frame. While prior work has posed the problem and initiated an analysis [155] and empirical

application [86] of such behaviors, both efforts introduced point solutions that focused on a single

contact mode with ad-hoc geometry. Here the formal derivation of an expression for the pitch as an

implicit function of the leg state, hφ (θ), allows analytical solutions in any contact condition, with

consequent formal insight into the implications of leg shape.

Section 4.3.2 uses the domains of the various quasi-static contact conditions for RHex (Sec-

tion 4.1.3, Fig. 4.3) and the implicit function for pitch based on the base kinematic constraint (Sec-

tion 4.1.4) as in (44) in order to evaluate across all contact conditions to find the maximum range

(as shown in Fig. 4.6). This range is extended from about 10◦ of pitch when both legs are in rolling

contact (as first discovered in [155]), to about 35◦ when all modes are considered, greatly increas-

ing the view of the world afforded to any payload sensors. Furthermore Section 4.3.2 compares

the torque (Section 4.1.8) needed to hold a pitched pose with different leg shapes, finding that the

rounded leg uses less power than the stick leg. Section 4.3.2 shows that the pitching rate is exactly
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controlled by the analytical expression (59), based on the closed-loop constraint (Section 4.1.7),

eliminating the need for a numerical solution to guarantee constant pitching velocity [155]. Finally,

Section 4.3.2 checks the dynamic effects (Section 4.1.10) to maintain the integrity of the sensory

behavior by ensuring that the platform maintains frictional contact with the ground.

Scanning Range

Within a given quasi-static contact mode (Fig. 4.3), pitch is an implicit function of the equality

constraint (44), which for example in rolling contact on both legs (for simplicity written here for a

symmetric robot, Assumption D.2),8

hφ (θ) = arctan

(
4ℓ+ρ(sin(θ2)− sin(θ1))

ρ(cos(θ2)− cos(θ1))

)
, (55)

The value for φ for all quasi-static contact modes is shown in the contour plot of Fig. 4.6, as well as

flow lines showing the constrained motion as a pushforward of a vector field over Y through (19).

The behavioral design problem is then to find the extrema of this pitch, formally set up as

either a constrained optimization in each contact mode, or an unconstrained optimization over the

combined implicit value for φ . This combined function is continuous as the active constraints in

two neighboring contact conditions are subsets of the constraints on the boundary. The easiest way

to solve this analytically is to choose y = θ1− φ , the global leg angle, and then parameterize the

implicit function (55) in terms of y, (here shown for the case of a stick leg in front and body contact

in the rear),9

hφ (y) = arcsin
ρ1 cos(y)−ρb

ℓ1+ ℓ2
, (56)

which is maximized at φ = arcsin
ρ1−ρb

ℓ1+ℓ2
≈ 17◦. It is clear from Fig. 4.6 that this maximal upward

pitch of φ ≈ 17◦ is achieved at θ1 = 17◦ and θ2 < -100◦, and from sitting (θ1 = θ2 = −180◦) this

pitch is only reachable when the rear body is sliding along the ground. Similarly the maximal

8Calculated by solving (44) for φ with the appropriate a (i.e. a concatenation of (42) for each leg).
9Calculated by solving (44) for φ with the appropriate a (i.e. a concatenation of (41) for the front and (43) in the

rear) and replacing θ1 with y+φ .
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Figure 4.6: Contour plot of pitch φ as a function of θ1 and θ2, (55) over entire quasi-static configu-

ration space (Fig. 4.3). Flow lines show constrained motion of the joints during double support (19).

The red highlighted flow is solution from [155].

98



downward pitch of φ ≈ -17◦ is achieved at θ2 = -17◦ and θ1 < -130◦, i.e. when the front body is on

the ground. This proves that,

Result B.1. The maximal pitching sensor sweep reaches φ = ±arcsin
ρ1−ρb

ℓ1+ℓ2
≈ ±17◦ by using the

sliding contact modes (56).

Such behaviors are shown in Fig. 4.7, where the robot is using a planar laser scanner to detect

a stairwell and check for cliffs, as in [86]. However depending on the exact task a path through the

double stance region may be useful in order to smoothly access both positive and negative pitches.

If restricted to only rolling contact, then the maximal pitch is about 10◦, as found in [155], and

shown in Fig. 4.6.

Torque Requirement

While both round and stick legs reach these same extrema in pitch, the torque required is not the

same. Under quasi-static operation the leg torque required to resist gravity is dictated by (16)

and (23), however in these sliding contact modes n=e= 1, and so there are no internal forces, and

Gs is directly invertible. Thus,

τ1 = -JThG
-1
s Fg,

which can be compared for different leg shapes. Evaluating for round legs,10

τ1 =−
ℓ2ρ1mbgcos(φ)sin(θ1−φ)

2(ℓ1+ ℓ2)cos(φ)−ρ1 sin(θ1−φ)
, (57)

while for stick legs,11

τ1 =−
ℓ2ρ1mbgcos(φ)sin(θ1−φ)

(ℓ1+ ℓ2)cos(φ)−ρ1 sin(θ1−φ)
. (58)

10Calculated with the appropriate Gs (i.e. a concatenation (84) of (82) for the front and (83) for the rear) and Jh (i.e.

simply (86) for the front).
11Calculated with the appropriate Gs (i.e. a concatenation (84) of (81) for the front and (83) for the rear) and Jh (i.e.

simply (85) for the front).
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While both leg shapes have the same zero torque point (when the leg is vertical, as found for the

previous behavior), in general,12

Result B.2. A round leg (57) requires less torque to hold a pitched position than a stick leg (58) at

the same angle.

This is easy to see intuitively, as the rounded leg has a shorter effective lever arm.

Velocity Control

As the robot is pitching its sensor, the data can be correlated by recording the pitch as measured

or calculated at each instant. However it may be necessary to sweep the sensor with some constant

pitching speed. In [155] this was achieved by numerically inverting the forward kinematics to

choose a leg angle velocity that produced the desired pitch velocity.

Here we take advantage of the analytical expression ofHo (19), the velocity Jacobian that arises

from the closed-loop constraint. Take for example rolling contact for the front leg and body contact

in the rear, and let y := θ1, then a desired pitch velocity of φ̇ d can be achieved by setting the leg

velocity,13

φ̇ =Hφ θ̇1 := πφHθ̇1 ⇐⇒ θ̇1 = (Hφ )
−1 φ̇ , (59)

where (Hφ )
−1 =

ρ1 sin(θ1−φ)−2(ℓ1+ ℓ2)cos(φ)

ρ1 sin(θ1−φ)
,

which can be implemented as an online feedback controller based on local measurements of θ1 and

φ , or can be calculated in advance numerically by using (18), (19), and thus,

Result B.3. A desired sensor pitch rate, φ̇ d can be exactly achieved by joint velocity tracking control

around the reference signal (59) as derived from the velocity Jacobian (19).

Note that the denominator of (19) goes to zero when θ1−φ = 0, i.e. when the leg is vertical, as

in fact the maximal pitch has been reached and the velocity control can no longer be applied.

12Recall that these different contact conditions have different implicit relationships between φ and θ1, however the
factor of 2 in the denominator of (57) is the dominant factor.

13Calculated from (20) with y as given and the appropriate A (i.e. (17) with Gs and Jh as in (57).
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Figure 4.7: Robot performing two pitching sensor sweeps with a planar laser scanner: (Left) upward

(φ > 0) to scan a staircase, (Right) downward (φ < 0) to check for a cliff.

Dynamics

The maximum speed at which the scanning behavior can be executed is limited by the takeoff

condition, Uλ ≥ 0, (7), based on the dynamics, (39) i.e. above a certain speed (ẏ := θ̇1) one of the

contact points may lift off the ground. The maximum joint speed that avoids liftoff of either leg

(with no torque, i.e. when the behavior reverses) is,

max ẏ,

s.t. Uλ ≥ 0,

λ = -D̃λ ẏ+ Ẽλ ,

τ = 0.

This speed is shown in Fig. 4.8 for a subset of the configuration space, along with a trace of the

solution from [155]. Now we can bound the speed of the system to be below the minimum over

this range, which is about 300 ◦/s for the entire rolling contact range, or a little higher for most

specific trajectories. In the rear body sliding contact case there is no solution to λ2,n = 0, i.e. the

front leg acting alone cannot lift the body off of the ground. However at high speeds the front leg

loses contact, but those speeds are about twice that of the rolling contact case, and so, the maximum

speed still consistent with full frictional contact is found numerically to be higher in the sliding

modes (Fig. 4.8).
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4.3.3 Pitch Control in Leaping

Leaping with a low pitching velocity but high forward velocity is very challenging for RHex be-

cause it entails in the high energy regime the delicate interaction of dynamics (Section 4.1.9) with

contact conditions (Section 4.1.3) that we have already found to play a critical role in the quasi-static

setting. For example, the pronk gait is known to have “severe pitch instability” on RHex [4], and as

such several methods of pronking pitch control have been suggested14 —modifying torques during

stance, adjusting the leg angles before touchdown, and rear leg stubbing (rapid leg deceleration at

the end of stance). The first strategy applies a differential torque between the motors [128], but

under rigid assumptions the robot motion is constrained to a single DOF (as noted in the standing

behavior). Even assuming leg compliance, this control authority is near-singular for typical leg

angles for pronking [4].

The second strategy considers the plane generated by the toes when landing, as the robot quickly

pitches until all toes are on the ground [128]. This effect can be canceled by setting the toes to be

parallel to the ground [4], or exploited by adjusting it to a desired pitch [128]. This had limited

success, as it, “appeared to disturb the robot’s touchdown angles enough to cause skidding” [127].

However the partial success of such strategies suggests that it may be beneficial in other ways, as it

results in a splayed posture. The intuitive motivation to enforce symmetry between the legs does, at

first, appear to control the pitch of the robot in stance as the parameterized free motion (19) has zero

pitch. However when the friction constraints are considered (7), Section 4.3.3 proves that the front

leg lifts off the ground first due to an unavoidable imbalance in toe normal forces (60), resulting in

a positive pitch velocity. The same is not true when a fixed splay between the legs is applied, and

Section 4.3.3 proves that a leap that uses such a splay inherently lowers the difference between front

and rear normal forces, resulting in a lower pitch velocity (Fig. 4.9).

The dynamics of the resulting rear leg support mode are higher dimensional and underactuated,

but by following Section 4.1.10 we show in Section 4.3.3 that the faster the rear leg is moving, the

more the robot pitches upwards (63). This effect explains the “stubbing” strategy used by some

14Of the first two, [127] notes, “Unfortunately ... neither method could be used successfully to control pitch during

pronking.”
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pronk controllers [4, 127], and is shown in an extreme case in Table 4.4 (based on the leaping

behaviors presented in Chapter 3), where over 20◦ of pitch correction is generated by a last minute

reversal in leg torque. Furthermore the liftoff conditions in this mode bound the possible forward

velocity, which can be used to answer both leg and behavioral design questions (Section 4.3.3). This

bound is lower for stick legs than rounded legs, and lower for level jumps than for pitched jumps,

further supporting the need for a splayed leap.

Finally Section 4.3.3 tests the inertial effects of the nearly-massless legs, as derived from the

robot dynamics. Leaping experiments verify that the legs can generate about 14◦ of body rotation

(Fig. 4.13).

Symmetric Liftoff Conditions

Before the undesirable pitching velocity can be corrected, it is necessary to determine the source

of the instability. Consider a symmetric robot (Assumption D.2) engaged in a “perfect” symmetric

leap, i.e. with two stick legs locked in parallel (θ1 ≡ θ2 ⇒ φ ≡ 0). This would at first glance appear

to be a desirable target for stable pronking (as was used, e.g, in [4]), since there is no pitch and the

pitch velocity is zeroed out by the infinitesimal kinematics,15

Hφ :=
∂φ

∂θm

=
2ρ2 sin(θ2−θ1)

γ1+ γ2
= 0,

implying the same condition holds for the pitch acceleration, φ̈ . Why then does this gait fail? The

answer lies in the liftoff conditions,Uλ ≥ 0,16

λ = -Dλ q̇+Eλ =




-
τ tan(θ2)

ℓ + τ cos(θ2)
ρ − 1

4
mbgsin(2θ2)−

1
2
mbρ sin(θ2)θ̇

2
2

τ
ℓ +

mbg
4

+ τ sin(θ2)
ρ + 1

4
mbgcos(2θ2)+

1
2
mbρ cos(θ2)θ̇

2
2

τ tan(θ2)
ℓ + τ cos(θ2)

ρ − 1
4
mbgsin(2θ2)−

1
2
mbρ sin(θ2)θ̇

2
2

- τ
ℓ +

mbg
4

+ τ sin(θ2)
ρ + 1

4
mbgcos(2θ2)+

1
2
mbρ cos(θ2)θ̇

2
2




.

15Calculated from (20) with y ≡ θm (as in (47)) and the appropriate A (i.e. (17) where Gs is a concatenation (84)

of (82) for each leg and Jh is block diagonal (87) with (86) for each leg), under Assumption D.2.
16Calculated from (33), using (88)–(92) and the same A, or equivalently (39), under Assumption D.2.
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Thus the difference between the rear toe normal force (4th row, denoted “2n”) and front toe normal

force (2nd row, denoted “1n”) is (note that in the normal force direction, U= -1, as in (76)),

(Uλ )2n− (Uλ )1n =
2τ

ℓ
, (60)

i.e. the rear normal force is always larger than the front normal force, and so,

Result C.1. In a symmetric jump (θ1 = θ2), the front leg lifts off the ground first (60) as an un-

avoidable consequence of the dynamics (19) and contact constraint (7) (under Assumption D.2).

If this were a bilateral constraint (e.g. pin joint), the front leg would continue to pull down on

the robot to maintain the neutral pitch that the closed-loop constraint suggests.

Splayed Liftoff Conditions

For the non-symmetric jumping case (θ1 6= θ2), the analytical solution to λ is complicated enough

to obviate any benefit of direct visual inspection. However we can look at how the imbalance of (60)

changes with the splay angle, θd := tTd θ (45) (under Assumptions D.2 and D.3),

∂ ((Uλ )2n− (Uλ )1n)

∂θd

∣∣∣∣
θd=0

=−
2ρτ sin2(θm)

ℓ2 cos(θm)
< 0, (61)

(and numerically true even for Ib in Table 4.2), thus with otherwise equivalent conditions,

Result C.2. A positive splay angle (θd) reduces the imbalance between the front and rear normal

forces (61) for RHex performing a forward leap (under Assumptions D.2 and D.3).

This splayed posture result is supported by the leaping dataset in Section 3.5. In those exper-

iments, the robot performed a family of forward leaps while applying maximally available motor

shaft torque with variations only in the relative timing of torque onset, t2, which can be seen in that

dataset to be well correlated with θd . Looking at the pitching moment at apex, as listed in Table 3.1

and plotted in Fig. 4.9, it is clear that the pitching moment generated from a single leap decreases

with increasing splay. Therefore a leap or pronk with a higher pitch (θd > 0, i.e. below the main
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Highlighted region are leaps that included a double stance period.

diagonal in the double rolling contact region of Fig. 4.6) on average incurs less deviation from that

initial pitch during this first phase of the leap.

Single Leg Dynamics

Once the front leg has lifted off the ground, the hybrid dynamics admit two degrees of freedom, and

so we drop θ1 from the state as under Assumption C.6, the massless front leg can have arbitrary

position in the air, which would otherwise violate Assumption A.4. Note that this contact mode

is not accessible quasi-statically, and as such is not shown in Fig. 4.3. Choosing y = [θ2,φ ]
T , the

constrained motion of (19) evaluated with A for a stick leg in the rear and no contact in the front,17

q̇=Hẏ=




θ̇2

ρ2 cos(θ2−φ)(θ̇2− φ̇)− ℓ2 sin(φ) φ̇

ρ2 sin(θ2−φ)(θ̇2− φ̇)− ℓ2 cos(φ) φ̇

φ̇


 , (62)

leading to the reduced dynamics of (35) for pitch,18

17Calculated from (20) with Y= [1,0,0,1] as given and the appropriate A (i.e. (17) where Gs is simply (81) and Jh is

simply (85).
18Calculated from (35)–(37) with (88)–(92) and H as shown in (62).
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φ̈ = -D̃φ q̇+ Ẽφ =
ℓ2mb cos(θ2)

(
ρ2(θ̇2- φ̇)2+ ℓ2 sin(θ2) φ̇

2
)

Ib+ ℓ22mb cos2(θ2)

+
τ2(1+

ℓ2
ρ2
sin(θ2))− ℓ2mbgcos(θ2)cos(θ2-φ)

Ib+ ℓ22mb cos2(θ2)
, (63)

where it is clear that,

Result C.3. Once the front leg has lifted off the ground, the harder the rear motor is pushing (τ2),

and the faster the rear leg is moving (θ̇2, when | φ̇ | < |θ̇2|), the more the robot accelerates counter-

clockwise in pitch (i.e. “upwards”, in the positive φ direction) (63).

Thus the controller design problem for a pronk-like leap becomes a balancing act between the

conflicting criteria to both move quickly and maintain pitch control. Some pronk implementations

on RHex reconcile this conflict by significantly reducing the torque at the end of stance, rapidly

decelerating the leg [4, 127], essentially stubbing the toe in order to quickly correct the pitch. This

toe stubbing effect is also anecdotally demonstrated as a leaping task in Chapter 3— here we present

additional data from that experiment. To show the possibilities of this strategy in an extreme case,

the apex state for two leaps, one with a strong toe stub and one without, are included in Table 4.4.

This confirms that rapidly slowing down the rear leg at the end of a jump can induce a large pitch

correction, greatly affecting the pitch velocity, though at the cost of 17% of the forward velocity.

Toe Stub? φ φ̇ |ẋ| T

Without 10.4◦ 57◦/s 1704 mm/s 11.4 J
With -13.5◦ -145◦/s 1414 mm/s 8.3 J

Table 4.4: Comparison of forward leaps: the toe stub (Result C.3) has significant control authority

over body pitch, in this extreme example changing the pitch by 24◦.

Implications of the Takeoff Condition

As in the prior subsection, consider the case where the front leg has taken off and only the rear leg

remains in contact. The friction cone (7) sets up an implicit bound on torque based on the contact
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forces (39),19

(Uλ )2n ≥ 0⇒ τ ≥
Ibmbρ2 cos(θ2-φ)

(
ρ2(θ̇2- φ̇)2+ ℓ2 sin(θ2) φ̇ −gcos(θ2-φ)

)

ℓ2mb cosθ2 (ρ2 cos(θ2-φ)+ ℓ2 sinφ)− Ib sin(θ2-φ)
, (64)

(here shown for a stick leg). Thus the faster the robot is moving (θ̇2), the more torque is required to

maintain contact, and so with any limited-torque actuator, the system speed exhibits a corresponding

upper bound. However in general the faster an actuator is moving, the less torque it can produce.

Applying a motor model of τ ≤ κPκG(1− κGθ̇) [129] (where κP is proportional to peak motor

power and κG is proportional to gear ratio), we can substitute for τ in (64) to get an equality that

imposes a necessary condition for liftoff on the robot’s state. This equality constraint can now be

solved with a variety of different implicit functions to gain insight into the manner in which different

19Calculated from (39)–(40) with (88)–(92) and H as shown in (62). Note that the denominator of (64) is positive

under Assumption D.1, i.e. normal standing/running ranges, for values listed in Table 4.2.

108



design choices — either entailing physical parameters, or various behaviors entailing controllers

which aim for different state space trajectories — can potentially influence the resulting conditions

at liftoff. The simplest of these obtains by considering the equality to be a quadratic form in θ̇ , so

that the resulting root functions can be passed through the infinitesimal kinematics (62) yielding

a closed-form expression for the maximum forward velocity at liftoff, here shown for mid-stance

(θ2 = 0 and φ = 0) with stick legs,

ẋ=
-κb+

√
κ2
b+4Ibκc

2Ib
, (65)

κb := ℓ2κ2
GκP, κc := κbρ2

(
1

κG

− φ̇

)
+ρ2gIb.

For rounded legs, the same maximum forward velocity is,

ẋ=
-κb+

√
κ2
b+4 Ib

2
κc

2 Ib
2

. (66)

Fig. 4.10 shows this forward velocity bound for a robot with a stick leg and for a rounded leg across

a range of leg and body angles typically found for stance. We conclude that,

Result C.4. The dynamical bound on the forward speed is higher for rounded legs (66) than for stick

legs (65).

as is true analytically for mid-stance20 and therefore by smoothness for some neighborhood

around that point, and is numerically shown to be at least 0.6m/s faster over the entire range of

Fig. 4.10 (all assuming φ̇ ≈ 0).

This bound is very rough as it does not consider compliance or damping (or in this figure,

pitching velocity), but does shed considerable light on the new considerations that emerge in the

dynamical regime whereby the rounded legs of RHex when running forward afford a higher speed

limit, even at the point of mid-stance whereas, in contrast, quasi-statically the two morphological

20Compare (65)–(66) with the quadratic formula and note that the factor of 2 in the inertia (ẋ2 term when written out

in quadratic form) makes (65) smaller than (66) for any set of positive parameter values and φ̇ < 1/κG, i.e. the motor

no-load speed.
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Figure 4.11: Forward velocity (ẋ, in m/s) at takeoff point of second (rear) leg under rolling contact

for various gear ratios G and pitch φ , shown for φ̇ = 0 , and optimal θ2. Gear ratio for XRL is

typically 23:1, just below the optimal of between 25–30.

variants are equivalent (as described in Section 4.1.6).

In contrast, the liftoff constraint (64) can be used in a more conventional numerical manner, for

example determining the

max ẋ,

s.t. (Uλ )2n ≥ 0,

λ = -D̃λ ẏ+ Ẽλ ,

τ ≤ κPκG(1−κGθ̇)

allowing ẏ to vary. Specifically, note that for each φ in Fig. 4.10, there is a unique θ2 that maximizes

ẋ. As shown in Fig. 4.11 (shown for φ̇ ≈ 0), the optimal gear ratio lies somewhere around 25:1

depending on the pitch at take off, only slightly above the actual value of 23:1 for this robot.

Similarly, using this maximal takeoff point to eliminate θ2 from (64) we can now test the de-

sirability of φ̇ ≈ 0. Calculated numerically and shown in Fig. 4.12, we see that a positive pitch φ

but small pitching velocity φ̇ (as results from a splayed posture) results in the highest maximum

forward speed (numerically calculated based on Table 4.2).

These maximal speed points are specific positions and velocities (y, ẏ) that may or may not be

reachable – in fact as shown in Fig. 4.9 all of the jumps with double support in this way still had a

non-zero positive pitching moment (see Table 3.1).
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Figure 4.12: Forward velocity (|ẋ|, in m/s) at takeoff point of second (rear) leg under rolling contact
for various pitching velocities φ̇ (in ◦/s) and pitches φ (in ◦), for optimal θ2, and gear ratio G= 23.

Inertial Leg Effects

In the air, the dynamics of the robot are not restricted by the closed-loop constraint (12), as there

are no contact forces, however conservation of angular momentum in the absence of external forces

now imposes a nonholonomic constraint. Solving the dynamics as in Section 4.1.9 takes these con-

servation laws into account, ensuring that the time derivative of momentum is equal to the applied

force, which here is zero. Recall that up until this point under Assumption C.6 we have used mass-

less legs (asml/mb < 1%), but here we drop that assumption to test what effect the very light legs do

have. The leg effectiveness [92] is defined as the body velocity per differential leg velocity, which

can be calculated by placing the world reference frame,W, at the system center of mass and solving

the conservation of angular momentum equation as follows (for a single leg),21

πφ

(
∂L

∂ q̇

)
= πφ

(
AdTgpwM̂

[
θ̇

Vb
op

])
= 0⇒

εn :=
φ̇

θ̇1

=−
Il +mr

(
(ρ1

2
)2− ℓ1

ρ1

2
sinθ1

)

Ib+ It +mr

(
ℓ21+(ρ1

2
)2−2ℓ1(

ρ1

2
)sinθ1

) , (67)

mr :=
mbml

mb+ml

,

21Calculated with πgpw := ml

ml+mb
πgpl1 . Note that the conservation of momentum laws apply only to body velocities

at the center of mass, as used here.
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Figure 4.13: Robot state just prior to touchdown after two jumps: (Left) the legs completely recir-

culated clockwise, (Right) the legs went directly to the final angle counterclockwise.

which is the same as [92], up to notation. Note that the effectiveness is shape dependent — the

relationship between leg velocity and body velocity is not constant over all θ . However an interest-

ing simplification arises when two legs equally spaced from the robot COM (Assumption D.2) are

controlled so as to be locked in parallel, θ1(t)≡ θ2(t),

εn :=
φ̇

θ̇1

=−
2Il +mr2(

ρ1

2
)2

Ib+2Il +2mlℓ1+mr2
ρ1

2

, (68)

mr2 :=
mb(2ml)

mb+(2ml)
,

i.e. the configuration dependence goes away. With all six legs included, the effectiveness for RHex

is only εn = 0.035, though it is almost twice a naı̈ve estimate of 6Il
Ib

= 0.018 (see Table 4.2).

To verify the inertial effects of the legs, the robot performed a single jump (as in Chapter 3) and

the legs were sent to a given position, but in one case they were controlled to recirculate completely,

while in the other they were not. Thus between the two tests the leg angles θ differ by exactly 360◦.

This resulted in a difference in body pitch of 14◦ (median taken across 5 jumps of each type), as

shown in Fig. 4.13. Thus the measured effectiveness is εm = 14/360 = 0.039, quite close to what

the model predicts, and critically,

Result C.5. The legs act as inertial tails and, when locked in phase, can produce a body rotation of

εn (68) for each complete rotation they execute during flight (Fig. 4.13).
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4.4 Appendix to Chapter 4

4.4.1 Kinematic Constraints

The base constraint (8) may be expanded as,

xck =πck(gckw(q)) = πck (gcksk(q) ·gskw(x)) ,

where,

gcksk(q) :=gck fk(q) ·g fksk(θ),

gskw(x) :=gsk p ·gpw(x),

however note that while gck fk depends on q, the projection πck(gck fk) does not vary over time (i.e. it

may be thought of as being parameterized by the initial value, qa(0), but not a time varying function

of q). This frictional restriction is much clearer when expressed as a velocity constraint, BT
ck
Vs
ck fk

≡

0, which is one reason most multi-fingered manipulation texts often skip the base constraint and

directly apply a velocity or force constraint (including refs. [13, 119, 120, 134, 137, 162]).

The velocity constraint equation (11) is proven in twist coordinates by using the following iden-

tities (see [134, p. 59] for proof of (69) and Section 4.4.6, below, for a proof of (70)),

Vs
ac = Vs

ab+AdgabV
s
bc, (69)

Vs
ab = -Vb

ba, (70)

[134, Prop. 2.14, Lemma 2.16], and the friction constraint,

BT
ck
Vs
ck fk

≡ 0, (71)

[134, Eqn. 5.9] (ensuring no motion in the constrained directions) and so,

0=
d

dt
ak ◦qa = BT

ck
ġckw ·g

−1
ckw

·gckw ⇒ 0= BT
ck
Vs
ckw
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= BT
ck
(Vs

cksk
+AdgckskV

s
skw

),

Vs
cksk

= Vs
ck fk

+Adgck fk
Vs

fksk
= -Vb

fkck
−Adgck fk

Vb
sk fk

,

Vs
skw

= Vs
sk p

+Adgsk pV
s
pw = 0−Adgsk pV

b
wp,

0= BT
ck
(-Adgck fkV

b
sk fk

−AdgckskAdgsk pV
b
wp)

= -BT
ck
Adgck fk

(q)Jbsk fk(θ)θ̇ −BT
ck
Adgck p(q)R

T
wpẋ.

An alternate proof of (11) is given here using a homogeneous representations of velocity, V̂ :=

(V)∧, by using the following identities (in addition to (70), proven below),

V̂s
ab := ġabg

−1
ab ,

(AdgabV
s
bc)

∧ = gabV̂
s
bcg

−1
ab ,

[134, Eqn. 2.53, Lemma 2.13] (and indeed all of [134, Section 2.4]), and the friction constraint (71)

so,

0=
d

dt
ak ◦qa

= BT
ck
(ġck fkg fkskgskw+gck fk ġ fkskgskw+gck fkg fkskgsk pġpw)

∨

= BT
ck

(
(ġck fkg

−1
ck fk

+gck fk ġ fkskg
−1
fksk

g−1
ck fk

+gckpġpwg
−1
pwg

−1
ckp

)gckw

)∨

⇒ 0= BT
ck
(Vs

ck fk
+Adgck fk

Vs
fksk

+Adgck pV
s
pw)

= 0−BT
ck
Adgck fk

Jbsk fk θ̇ −BT
ck
Adgck pR

T
wpẋ= Ak(q)q̇.

4.4.2 Grasp Map and Hand Jacobian

The definition of the grasp map (13) is often given in terms of body velocity, Vb
po, but computation

of the dynamics is easiest in some local coordinates, ẋ. Here we have also defined a grasp map

in terms of the more relevant body velocity Vb
op. These various versions of the grasp map are, of

course, equivalent as summarized here:

GT
s R

T
wpẋ=GT

s V
b
wp =GT

s V
b
op =GTVb

po.
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For further notes on this see [134, Eqn. 6.18] as opposed to [134, Eqn. 5.15], discussion on [134,

pp. 279, 283], and paragraph surrounding [162, Eqn. 28.1].

As for the hand Jacobian, note that the contact wrenches (or twists) at one toe have no direct

effect on joints on a different leg (hence the block diagonal structure of Jh). The indirect effects are

captured by the closed-loop constraint (11,12). That the legs can be decoupled in this way is less

obvious than in the multi-finger manipulation case, where each finger is rigidly attached to a fixed

inertial frame. This decoupling comes from Newton’s third law of motion, that every action has an

equal and opposite reaction, and thus we may calculate the joint torques equally well by adding up

the effects on either side of the joint.

4.4.3 Rolling Contact

As noted in Sec. 4.1.6, the fact that RHex’s legs are not simple sticks does not change any of the

analysis thus far, it simply makes the Gs and Jh matrices more complicated. The free motion of the

hip at any given moment under rolling contact is identical to the motion of an equivalent stick leg

connecting the hip to the contact point.

To prove this, consider a point on the circumference of a circle as it rolls — it follows a cycloid

path. If we first assume that the world frame W is attached to the ground at the toe when the robot

is standing (θ = 0), with the z axis pointing into the ground, then the hip location is (xc,zc) :=

πgws(0) = (0, -2ρh) (where ρh := ρ1/2 is the leg radius) then the position of the hip as a function of

the motor angle θ is,

xc = ρhθ +ρh sin(θ), zc = -ρh−ρh cos(θ).

Note that the definition of θ used in this chapter has the leg in contact on the rounded half of the

leg when θ < 0, i.e. the leg is on the rounded half before mid-stance, and on the toe afterwards (as

opposed to other robots whose half-circle legs are used in the opposite direction [74]).

Now consider a virtual leg extending from the hip to the contact point. Let the angle that this

virtual leg makes with vertical be ϑ and the leg length be ρl . The hip position relative to the true
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world frame at that moment, (x f ,z f ) := πgws(ϑ), for a fixed leg of length ρl and angle ϑ is,

x f = ρl sin(ϑ), z f = -ρl cos(ϑ).

First note that the triangle consisting of the center of the leg, the hip, and the contact point must

be isosceles, as two of the sides are length ρh, and the third length ρl . The angle at the center of the

circle must then be π −θ as the supplementary angle is θ . Therefore by noting that the equal angles

in that triangle are ϑ , we find that ϑ = θ/2.

Now the infinitesimal direction of free motion for each case (i.e. the tangent of the trajectory),

∂xc
∂θ

= ρh+ρh cos(θ),
∂ zc
∂θ

= ρh sin(θ),

∂x f
∂ϑ

= ρl cos(ϑ),
∂ z f
∂ϑ

= ρl sin(ϑ),

∂ zc
∂xc

=
sin(θ)

1+ cos(θ)
,

∂ z f
∂x f

=
sin(ϑ)

cos(ϑ)
,

can be compared using the double angle identity to find,

∂ zc
∂xc

=
2sin(ϑ)cos(ϑ)

1+2cos2(ϑ)−1
=

sin(ϑ)

cos(ϑ)
=

∂ z f
∂x f

.

Therefore the twist direction is the same whether you follow the full cycloid curve, or at each

instant follow a virtual leg. This property is much more general than just for half circle legs, as

shown in [134, Chapter 5.6].

4.4.4 Dynamics

The generalized mass matrix,M, is derived by summing the contribution of each link,

T =
1

2
mb||v

b
wp||

2+
1

2
Ib||ω

b
wp||

2+
n

∑
i=1

(
1

2
mli ||v

b
wli
||2+

1

2
Ili ||ω

b
wli
||2
)

=
1

2
(Vb

wp)
TMbV

b
wp+

n

∑
i=1

1

2
(Vb

wli
)TMliV

b
wl ,

Vb
wli

= Adg−1
pli

Vb
wp+Vb

pli
,
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T =
1

2
(Vb

wp)
TMbV

b
wp+

n

∑
i=1

1

2
(Adg−1

pli

Vb
wp+Vb

pli
)TMli(Adg−1

pli

Vb
wp+Vb

pli
)

=
1

2
(Vb

wp)
TMbV

b
wp+

n

∑
i=1

(
1

2
(Vb

pli
)TMliV

b
pli

+(Vb
pli
)TMliAdg−1

pli

Vb
wp+

1

2
(Vb

wp)
TAdT

g−1
pli

MliAdg−1
pli

Vb
wp

)
,

where both Adg−1
pli

and Jli both depend only on θ . Substituting Vb
wp = RT

wpẋ results in the inertia

tensor given in (26).

The accelerations and constraint forces may be solved for as follows (33),

M(θ ,φ)q̈+C(θ ,φ , q̇)q̇+N(θ ,φ)+AT (θ ,φ)λ = ϒ(τ)

[
M AT C

A 0 Ȧ

]


q̈

λ

q̇


=

[
ϒ−N

0

]

[
M AT

A 0

][
q̈

λ

]
=

[
ϒ−N

0

]
−

[
C

Ȧ

]
q̇

[
q̈

λ

]
=

[
M AT

A 0

]-1[
ϒ−N

0

]
−

[
M AT

A 0

]-1[
C

Ȧ

]
q̇.

Some dimensional analysis — the dynamics provides q equations, and the constraint equation

provides c. Total, there are 2q + c unknowns, so in non-singular configurations we can solve for the

q + c unknowns q̈ and λ in terms of the q remaining variables, q̇, as shown above. Note that this does

not require M be invertible, which is not the case with massless legs, or require Jh be invertible (as

with [134, Eqn. 6.22]), which never is the case with “simple” legs like on RHex. Instead this method

solves for both the system accelerations and constraint forces at the same time by inverting a block

matrix that includesM and A that in general is non-singular so long as rank(M)+ rank(A)≥ q+c,

or rank(M) ≥ e = q− c and the constraints are non-singular (this is equivalent to the requirement

that the mass matrix of the reduced dynamics, M̃, to be defined in the next section, be full rank).

Now putting the whole system together we arrive at the differential equation (and splitting up

the rows of D and E as suggested by the subscript),
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d

dt

[
q̇

q

]
=

[
-Dq̈ 0

Idq 0

][
q̇

q

]
+

[
Eq̈

0

]
, (72)

λ = -Dλ q̇+Eλ .

As used in [134, Eqn. 6.23], and [162, Eqn. 28.20], the dynamics may re-written in twist coor-

dinates (though only after we have derived them in local coordinates), where (33) becomes,

M̂(θ)ν̇ + Ĉ(θ ,ν)ν + N̂(θ ,φ)+

[
-Jh
Gs

]
λ = ϒ(τ), (73)

ν :=

[
θ̇

Vb
op

]
,

where M̂ is the combined body inertia tensor as given in (25), while Ĉ, and N̂ have been suitably

rotated by Rwp. However the lower line of (72) must reflect ẋ= RwpV
b
op.

IfM is invertible, the Lagrange multipliers may be solved for first and then used to calculate q̈,

λ = (AM
−1
AT )−1

(
AM

−1
(ϒ−Cq̇−N)+ Ȧq̇

)
,

q̈=M
−1 (

ϒ−Cq̇−N−ATλ
)
,

[134, Eqn. 6.5, 6.6].

4.4.5 Reduced Dynamics

The reduced dynamics can be found by using the Lagrangian written in the reduced coordinates,

T̃ (y, ẏ) :=
1

2
ẏTHT (h(y))M(h(y))H(h(y))ẏ=

1

2
ẏTM̃ẏ,

Ṽ (y) :=V (h(y)),

L̃(y, ẏ) =
1

2
ẏTM̃(h(y))ẏ−Ṽ (h(y)),

and following along as above, or by noting that HTAT = 0 and working from (32),
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M(θ)q̈+C(θ , θ̇)q̇+N(θ ,φ)+AT (θ ,φ)λ = ϒ

HTMq̈+HTCq̇+HTN+HTATλ =HTϒ

HTM(Hÿ+ Ḣẏ)+HTCHẏ+HTN+0=HTϒ

M̃ÿ+ C̃ẏ+ Ñ= ϒ̃,

leading to (35) and summarized as,

d

dt

[
ẏ

q

]
=

[
-D̃(q, ẏ) 0

H(q) 0

][
ẏ

q

]
+

[
Ẽ(q)
0

]
. (74)

To recover the Lagrange multipliers, using the pseudoinverse A∗AT = Idc as chosen in (40),

λ = A∗(ϒ−Mq̈−Cq̇−N)

= A∗(ϒ− (MH)ÿ− (MḢ+CH)ẏ−N)

= A∗(Idq−MH(HTMH)−1HT )(ϒ− (MḢ+CH)ẏ−N)

= A∗(ϒ− (MḢ+CH)ẏ−N).

Note that the other term in (40) has an interesting (though here unused) interpretation, as

(MH)∗AT = 0 implies that when q̇T ∈ (MH)∗, Aq = 0, i.e. its rows are the state velocities that

imparts no contact force whatsoever. Furthermore since (MH)∗(MH) = Ide, such velocities also

impart unit compliment momentum in the reduced system, i.e. HTMq̇ is a unit basis vector.

4.4.6 Proofs of Lemmas

The proof of [134, Lemma 2.16],

Vb
ab = -Vs

ba,

Vb
ab = -AdgbaV

b
ba,

uses the following properties of rigid transformations and skew symmetric matrices,
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Rab = R−1
ba = RT

ba,

RT (p)∧R= (RTp)∧, (p)∧R= R(RTp)∧,

ṘRT = -(ṘRT )T ,

R(S)∨ = (RSRT )∨,

(p)∧q= -(q)∧p,

g−1
ab = (-RT

abpab,R
T
ab) = (pba,Rba) = gba,

[134, Sec. 2.2.1, 2.4] and the definitions

Vs
ab =

[
-ṘabR

T
abpab+ ṗab

(ṘabR
T
ab)

∨

]
,

Vb
ab =

[
RT
abṗab

(RT
abṘab)

∨

]
,

Adgab =

[
Rab (pab)

∧Rab

0 Rab

]
,

Vs
ab = AdgabV

b
ab,

[134, Eqn. 2.58–2.61] and so the second part of the Lemma is proven as,

−AdgbaV
b
ba =−

[
Rba (pba)

∧Rba

0 Rba

][
RT
baṗba

(RT
baṘba)

∨

]

=−

[
RbaR

T
baṗba+(pba)

∧Rba(R
T
baṘba)

∨

Rba(R
T
baṘba)

∨

]

=−

[
ṗba+Rba(R

T
bapba)

∧(RT
baṘba)

∨

(Rba(R
T
baṘba)R

T
ba)

∨

]

=−

[
ṗba− ṘbaR

T
bapba

(ṘbaR
T
ba)

∨

]

=−

[
(−ṘT

abpab−RT
abṗab)− ṘT

abRab(−RT
abpab)

(ṘT
abRab)

∨

]

=

[
RT
abṗba

(RT
abṘab)

∨

]

= Vb
ab,

and thus the first part is also proven by combining this with the definition of Adgba ,
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Vs
ba = AdgbaV

b
ba = -Vb

ab.

4.4.7 Values for RHex

Based on the specification of Section 4.2.1.

From Section 4.1.3, the point contacts with friction at the toes implies a projection πck := π

down to the linear components, x and z, which thus leads to a planar wrench basis of,

Bck :=




1 0

0 1

0 0


 , k ∈ 1,2, (75)

corresponding to tangential and normal forces in the contact frame. The corresponding friction cone

(7) is (where recall that Ck is defined with the z axis pointing into the ground),

Ukλck :=

[
±1 µk

0 -1

][
λkt

λkn

]
≥ 0, k ∈ 1,2, (76)

where the sign of the coefficient on the tangent components is selected to be the opposite of the sign

of λt , or alternatively both signs may be included in separate rows, and µk is the usual static friction

coefficient.

When the body contacts the ground, the sliding contact implies a projection πck := πz down to

only the normal component, z, and thus has a wrench basis of,

Bbk :=




0

1

0


 , k ∈ 3,4, (77)

and the friction cone is,

Ukλck :=
[
-1
][

λkn

]
≥ 0, k ∈ 3,4. (78)
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The combined U for all k contacts is then defined as (7),

Uλ :=




U1 0 0

0
. . . 0

0 0 Uk







λc1
...

λck


≥ 0. (79)

From Section 4.1.4, the active components ak of the base kinematic constraint are shown in (41)–

(43), which combine to form a in each contact mode,

a :=




a1
...

ak


 . (80)

From Section 4.1.5, the component of the self-manipulation grasp map for each toe contact

(0≤ θk−φ < π,k ∈ 1,2) is thus,

Gs,k =




-cosφ sinφ

- sinφ -cosφ

ℓk sinφ −ρk cos(θk−φ) ℓk cosφ −ρk sin(θk−φ)


 , (81)

while the component of the grasp map for rolling contact (-π < θk−φ < 0,k ∈ 1,2) is,

Gs,k =




-cosφ sinφ

- sinφ -cosφ

ℓk sinφ − ρk

2
(1+ cos(θk−φ)) ℓk cosφ − ρk

2
sin(θk−φ)


 . (82)

The component of the grasp map for each body contact k ∈ 3,4 is thus,

Gs,k =




sinφ

-cosφ

ℓk cosφ


 . (83)

A complete grasp map is then the concatenation of all active components (14),

Gs :=
[
Gs,1 . . . Gs,k

]
. (84)
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The hand Jacobian for legs in toe contact (0< θk−φ < π,k ∈ 1,2) is thus,

Jh,k =

[
-ρk cos(θk−φ)
-ρk sin(θk−φ)

]
, (85)

while the hand Jacobian for rolling contact (-π < θk−φ < 0,k ∈ 1,2),

Jh,k =

[
-

ρk

2
(1+ cos(θk−φ))
-

ρk

2
sin(θk−φ)

]
, (86)

and the hand Jacobian is zero for k ∈ 3,4. A complete hand Jacobian is then a block diagonal of all

active components,

Jh :=




Jh,1 0 0

0
. . . 0

0 0 Jh,k


 . (87)

The combined velocity constraint matrix A for each contact mode is defined from these compo-

nents (17). For example the combined constraint A in the mode shown in Fig. 4.2 (front leg rolling,

rear leg toe contact, no body contact) is,

A=
[
-Jh GT

s R
T
pw

]
=




ρ1

2
(1+ cos(θ1−φ)) 0 -1 0 ℓ1 sinφ − ρ1

2
(1+ cos(θ1−φ))

ρ1

2
sin(θ1−φ) 0 0 -1 ℓ1 cosφ − ρ1

2
sin(θ1−φ)

0 ρ2 cos(θ2−φ) -1 0 -ℓ2 sinφ −ρ2 cos(θ2−φ)
0 ρ2 sin(θ2−φ) 0 -1 -ℓ2 cosφ −ρ2 sin(θ2−φ)


 .

From Section 4.1.7 and 4.1.8, see examples worked out in Section 4.3.

From Section 4.1.9, the combined mass matrix (26) and Coriolis matrix (30) are shown in

Fig. 4.14. Recall that these are the same in every contact state.

However when assuming massless legs,M is much simpler,
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Mmassless =




0 0 0 0 0

0 0 0 0 0

0 0 mb 0 0

0 0 0 mb 0

0 0 0 0 Ib



, (88)

and Cmassless is all zeros.

The potential energy is (recall that z points “down”),

V = -mbgz, (89)

and thus the nonlinear forces (gravity) are,

N=




0

0

0

-mbg

0



, (90)

while the body wrench due to gravity is (recall that the body wrench is the negative of the object

wrench),

Fg = -RT
wpNo =




-mbgsinφ

mbgcosφ

0


 . (91)

The applied force is,

ϒ =




τ1
τ2
0

0

0



. (92)

From Section 4.1.10, the constituent matrices are different in each contact mode and parameter-

ization of the closed-loop parameter, but can be derived from (75)–(92).
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Chapter 5

Impulses and Hybrid Systems

Simple models of complex robot-world interactions are key to understanding and generalizing ob-

served behaviors [52] and reasoning about the composition of their constituents to generate new

ones. Many of these simplifications are known to be only coarse approximations to the true phys-

ical processes, but still have significant value. Beyond their clarity, generalizability, and analytical

tractability, they can provide qualitatively correct predictions for the behavior of real physical sys-

tems, such as the simulated leaping behavior depicted in Figure 5.1 that recreates the empirical

results of Chapter 3 at a coarse level1. In this chapter we will combine several commonly–used

simplifications into a consistent mathematical model suitable for analysis.

While the primary goal of this thesis is not numerical analysis, simulation does provide a useful

way to visualize key features of the model and the utility of some of the simplifying assumptions.

Numerical results obtained through a custom Mathematica2 simulation will be used to illustrate key

concepts, as in Figure 5.1. Of course, the relevance of the modeling choices proposed can only

be established by the breadth of physical phenomena they usefully approximate, regardless of the

simplification and ease of analysis they afford.

1For this simulation the middle and rear legs are used with a maximum current limit of 20A, a pseudo–impulse

magnitude of δt = 0.03 (hand selected to give the qualitatively best overall results), relative leg timing of t2 = 0.01 (i.e.

the middle legs are started 0.01s before the rear legs), and once a leg has lifted off the ground it is slowly rotated upwards
out of the way. Remaining model parameters are as listed in Sections 4.2 and 4.4.7.

2Wolfram Mathematica 9, http://www.wolfram.com/mathematica/. Numerical integration uses the

NDSolve command, event detection uses the WhenEvent command.
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t=0.20

t=0.14

t=0.18t=0.16

t=0.12t=0.10

t=0.08t=0.06t=0.04

t=0.02t=0.0t=-0.02

Figure 5.1: Keyframes from RHex simulation leaping onto a 20cm ledge. Blue arrows show contact

forces (relative scale 10N = 1cm) while the red arrow shows body velocity (relative scale 10cm/s=
1cm).
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A : TQ→ TC Velocity constraint function (5.1.1)

A† : T ∗Q→ T ∗C Force constraint function (2)

D =
∏

J∈J DJ Hybrid system domains (Def. 5.1)

F :D → TD,FJ = F|DJ
Vector field (Def. 5.1)

G =
∏

(I,J)∈Γ GI,J,GI,J ⊂ DI Guard set (Def. 5.1)

H := (J ,Γ ,D,F ,G,R) Hybrid dynamical system (Def. 5.1)

i, j,k ∈ K ⊆K Contact constraints (5.1)

I,J,K ∈ J ⊂ N Discrete states and their indexing set (5.1)

J ⊂ N Discrete indexing set (Def. 5.1)

M : T 2Q→ T ∗Q Inertia tensor (5.1.1)

M
†
: T ∗Q→ T 2Q Constrained inverse inertia tensor (2)

Pq ∈ T ∗Q, Pλ ,Pδ ∈ T ∗C Impulses (5.1.2, 10, 39)

q ∈ Q := Θ×SE(d) Continuous state (5.1)

Tq ∈ TQ Continuous state and velocity (5.1)

R : G →D,RI,J =R|GI,J Reset map (Def. 5.1)

U : T ∗C → R
k Unilateral constraint cone (5.1)

Γ ⊂ J ×J Set of discrete transitions (Def. 5.1)

δt ∈ R
+ Small time duration of impact (39)

∆q̇ ∈ T 2Q Instantaneous change in velocity (5.1.2)

λ ∈ T ∗C Lagrange multipliers (constraint forces) (5.1.1)

Λ : T 2C → T ∗C Constrained contact inertia tensor (2)

�,�,≡ Trending negative/positive (Def. 5.4)

Table 5.1: Key symbols used throughout this chapter, in addition to Table 4.1, with section, equation,

or definition of introduction marked.

5.1 Dynamics

The continuous Lagrangian dynamics of self-manipulation is specified in Chapter 4 using the nota-

tion and terminology of [134], and we continue to work within that framework here. However the

impulsive dynamics (instantaneous changes in velocity when a new contact is added) were not spec-

ified in either, and so we will briefly describe them here. In addition this section will make explicit

how the massless leg and frictional assumptions made in Chapter 4 affect both the continuous time

and impulsive dynamics, leading to a formulation that is different but, as we will show, equivalent

to the usual formulation when there are no massless links. Finally this section introduces a new

pseudo-impulse that eliminates certain Zeno executions and related chattering behavior.

The notation used in this chapter was chosen to be consistent with Chapter 4 (in particular
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Table 4.1 and agreeing where possible with [134]) or will be defined as it is used and summarized

in Table 5.1. The base component of the state is denoted, q, while the full state is, Tq := (q̇,q), and

this state completely describes the motion of interest, as,

Assumption 5.1 (Rigid Bodies). The robot is made up of a finite number of rigid bodies and therefore

its configuration can be described by some set of coordinates q.

We are concerned with sets of constraints I,J,K whose individual elements i, j,k, comprise the

possible contact constraints (Chapter 4.1.3, [134, Sec. 5.2.1]), both in the normal (non-penetrating

— algebraically the span of the ith row of the array Ak which is the tangent map arising from the

ith constraint) or tangential (non-sliding — algebraically, the orthogonal complement of that same

ith row) directions (denoted with a subscript n or t, respectively). It is well established that the mo-

tion of mutually constrained rigid bodies can be effectively modeled using polynomial maps [175],

hence imposing contact constraints arising from their interaction with the piecewise polynomial

representations of the environment (commonly adopted by the sensory community [104]) leads to,

Assumption 5.2 (Semialgebraic). The set of free configurations can be represented as a semialge-

braic set.

With respect to the strata of this model of space, the persistence of contact is merely a further

assumption,

Assumption 5.3 (Persistent Contact). The robot is in contact with the world at some finite number

of points K ⊂K, and that contact in general persists for some non-zero amount of time.

The impact problem can be summarized as determining which constraints to add or remove from

the active set. The active set continues to constrain the system so long as the unilateral constraint

cone (Section 4.1.3) is positive, U(λ ) ≥ 0, where λ ∈ T ∗C is the vector of Lagrange multipliers

(constraint forces, Section 4.1.9). Included in U is both the non-attachment condition that normal

direction forces are positive as well as the friction cone that relates the magnitude of the normal and

tangential components.
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5.1.1 Massless Considerations

Massless appendages will be allowed here only in a limited form,

Assumption 5.4 (Massless Limbs). The rank deficiencies of the inertia tensorM (Section 4.1.9) must

be “corrected” by constraints sufficient to guarantee that any remaining allowed physical movement

excites some associated kinetic energy.

This condition admits its most physically straightforward expression via the requirement that

the inertia tensor is nonsingular when written with respect to generalized coordinates (i.e., any

local chart arising from an implicit function solution to the constraint equation (Section 4.1.4).

However, for purposes of this chapter, we find it more useful to work with the Lagrange-d’Alembert

formulation of the constrained dynamics (Section 4.1.9) hence, we translate that natural assumption

into more formal algebraic terms governing the relationship between the lifted (velocity) constraints,

A (Section 4.1.5), and the overall inertia tensor M as follows,

Lemma 5.1. The matrix
[
M AT

A 0

]
(as used in Section 4.1.9) is invertible if and only if the inertia

tensor expressed in generalized coordinates, M̃ (Section 4.1.10), is invertible (Assumption A.4 of

Section 4.1.11).

as shown in [85].

One common set of circumstances that satisfy this requirement arises when only the robot’s

most distal link (the lower leg, foot, or in the case of RHex, the entire leg) is massless and the

motion of its most distal point is completely constrained when it is on the ground. Although the

rank requirement is not limited to this setting, it represents the immediate motivation for our present

inquiry3.

Consider a parametrized family of singular semi-Riemannian metrics,

Mε(q) :Q× [0, ε̄]→ R
q×q (1)

3 Of course, any such massless links or limbs must then be removed from consideration as mechanical degrees–

of–freedom: since they are massless, when unconstrained, the associated joints can be considered to have arbitrary

configuration. Alternately, they may be governed by other dynamics that evolve at a much faster timescale than the

massive body segments.
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such that M0(q) :=M is the (possibly) degenerate inertia tensor for the system (Section 4.1.9) and

may be singular, while ε assigns a small mass and inertia to any putatively massless links such that

Mε(q) is full–rank for all ε > 0 (for our present purposes, it is sufficient to use a generic limiting

model such as Mε := M0+ εIdq rather than some more specific physically motivated one). The

dynamics of the system can be expressed using the inverse of the following block matrix contain-

ingMε ,

[
M

†
A†T

A† Λ

]
:= lim

ε−>0

([
Mε AT

A 0

])−1

=

(
lim

ε−>0

[
Mε AT

A 0

])−1

=

[
M0 AT

A 0

]−1

(2)

where Mε ,M
†
,Λ are symmetric positive semi-definite matrices (Λ is positive-definite). According

to the assumptions yielding Lemma 5.1, this ε-parametrized curve always takes its image in GL(n)

(the group of invertible matrices over Rn) within which matrix inversion is a continuous operation,

hence the limit commutes with the inverse operation, andM
†

ε is a well defined smooth curve defined

over all ε ∈ [0, ε̄].

The dynamics in this massless case will rely heavily on A† : T ∗Q → T ∗C that maps forces in

configuration coordinates to forces in contact coordinates4.

With this notation, the continuous-time dynamics of Section 4.1.9 can be expressed as

q̈=M
† (

ϒ−Cq̇−N
)
−A†T Ȧq̇ (3)

λ = A†
(
ϒ−Cq̇−N

)
−ΛȦq̇ (4)

where ϒ is the applied forces, C is the centripetal and Coriolis forces, and N is the nonlinear and

gravitational forces.

WhenMε is invertible (and, possibly, even for ε = 0), it is easy to verify the equivalences,

4Note that (40) of Section 4.1.10 used the notation A∗ while in this chapter we will use A† to signify the slight

difference in definition used here, and to avoid confusion with the pullback of A, usually noted as A∗, but which happens

to be A†T .
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M
†
=M

−1
−M

−1
AT (AM

−1
AT )−1AM

−1
(5)

A†T =M
−1
AT (AM

−1
AT )−1 (6)

Λ =−(AM
−1
AT )−1 (7)

as shown in Section 5.3.1.

Lemma 5.2. When M0 = M is invertible, the dynamics (3) and (4) are equivalent to the more

common expression (as stated e.g. in the last equations of Section 4.4.4, or [134, Eqn. 6.5, 6.6]),

q̈=M
−1 (

ϒ−Cq̇−N−ATλ
)
, (8)

λ = (AM
−1
AT )−1

(
AM

−1 (
ϒ−Cq̇−N

)
+ Ȧq̇

)
. (9)

The claim follows directly from substituting (5)–(7), the explicit solution to (2) when M is

invertible, into (3)–(4), as worked out in Section 5.3.3.

In order to avoid infinite cycling of adding and removing a contact point in a finite amount

of time (Zeno), an upper bound on all accelerations (even for massless limbs) must be assumed.

Without such a bound, a massless leg that has just separated could accelerate instantly to re-impact

the ground.

Though there are no truly massless limbs, computing the dynamics using (3)–(4) is numerically

more stable than inverting Mε in the presence of large disparities in limb segment masses [72,

Sec. 4.3]. Figure 5.2 shows the condition number for the RHex model5 (ratio of largest to smallest

singular values) for both Mε and the combined matrix inverted in (2). In this case the leg mass and

inertia are scaled with ε (i.e. ml = ε , Il = 0.007ε). At the actual value of ml reported in Table 4.2,

the condition number ofMε is more than an order of magnitude larger than that of the matrix in (2)

(4483 vs. 269).

5Here calculated at a “typical” position, with both legs resting on the ground (θ1 =−1.75,θ2 =−1.9).
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κ

Figure 5.2: Condition number κ over various values of the leg mass ml = ε , with the actual value

of ml = 0.126kg marked.

5.1.2 Impact Map

At impact into contact mode J, any incoming constraint velocity AJq̇ must be eliminated. Here, we

assume a Newtonian impact law, that is,

Assumption 5.5 (Plastic Impact). Impacts occur instantaneously and their effect is described by an

algebraic equation. Furthermore for the plastic impacts of this chapter, that relationship takes the

form of a mass-weighted projection into the constrained domain.

Thus consider ∆q̇ := q̇+− q̇− be the instantaneous change in velocity, ∆q̇=−(1+ε)A†T
J AJq̇

−

(recall that A†T : TC → TQ maps contact velocities to configuration velocities). The coefficient of

restitution, ε , is defined in the usual way, however throughout this thesis plastic impact (ε = 0) is

assumed. The body impulse in configuration coordinates is Pq :=−M∆q̇. The contact impulse (i.e.

the impulse at the contact points that induces the desired change in velocity to agree with the new

constraint set J) is,

Pλ ,J := A
†
JPq = A

†
JMA

†T
J AJq̇

− =−ΛJAJq̇
− (10)
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where recall that AJ , A
†
J ,M, and ΛJ are parameterized by the state q (which does not change during

impact, i.e. q+ = q−), and the impulses, Pλ ,J and Pq, are parameterized by both the state and the

incoming velocity, q̇−.

Lemma 5.3. When M is invertible, contact impulse (10) into contact mode J is equivalent to the

non-degenerate plastic impact law,

Pλ = (AJM
−1
AT
J )

−1AJq̇
− (11)

as listed e.g. in [35, Eqn. 3].

As with the proof of Lemma 5.2, the result may be seen by substituting (6) or (7), the explicit

solution to (2) when M is invertible, into (10), as worked out in Section 5.3.4.

5.1.3 Complementarity

We now introduce and reformulate for the massless setting the classical complementarity problem

for forces and impulses at the contact points. A general statement of the complementarity problem

(c.f. [42, 80]) is to find some indexed array of variables, x and y, such that

x≥ 0, y≥ 0, xTy= 0, (12)

(where for a vector x, x ≥ 0 ⇒ xi ≥ 0∀i) subject to some problem constraints — in the linear

complementarity problem, y :=Ax+c. Solutions to this problem produce a natural partition on the

index setK, where let J= { j ∈K : x j > 0} and Jc = { j ∈K : x j = 0}. Here we will use physical laws

to determine the variables x and y based on the outgoing bipartition (J,JC) and the incoming state,

Tq− = (q−, q̇−). Therefore the complementarity problem is reduced to only finding the unknown

partition (J,JC). Given two functions that map partition J ∈ 2K and state Tq ∈ TQ into a Euclidian

space with dimension equal to the size of the index set K, Y,Z : 2K×TQ→ R
|K|, we will assume

the existence of a complementarity functionCP,
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CPY,Z :TQ→ 2K, (13)

CPY,Z(Tq
−) = J, (14)

with the properties that,

Yj(J,Tq
−)> 0, Z j(J,Tq

−) = 0, ∀ j ∈ J, (15)

Yk(J,Tq
−) = 0, Zk(J,Tq

−)≥ 0, ∀ k /∈ J. (16)

where the equality constraints are often written asYk(J,Tq
−)Z j(J,Tq

−)= 0 [19, Eqn. 9], [112, Eqn.

2.10b]. Existence and uniqueness of a solution J will in the most general cases have to be an addi-

tional assumption (see Assumption 5.6 and 5.7, below), although for the specific complementarity

problems in this section (i.e. based on the relationship of the specific functionsY and Z used in these

cases), in the absence of friction, existence and uniqueness has been proven in e.g. [172, Ex. 3.3].

There are two complementarity conditions that are often considered in rigid body dynamics:

force–acceleration (there cannot be both a continuous time contact force and a separation accelera-

tion at the same contact point) and impulse–velocity (there cannot be both an impact-induced contact

impulse and a separation velocity at the same contact point), see Section 1.2.3 for motivation and

related work. With possibly massless limbs, the concept of a separation velocity or acceleration

is poorly defined as once it has lifted off the ground the joints in question must be dropped from

the state. Theorems 5.5–5.6 re-work both notions of complementarity to be compatible with mass-

less limbs and prove that they agree with the traditional statements when the separation velocity or

acceleration is well defined.

In the complementarity problems, the following definition simplifies the statements about the

invariance of high order contact that seem to arise unavoidably (as stated in [172, Sec. 3], [71,

Sec. 1], formalizing the concepts represented in e.g. [48, Fig. 11.4], [162, Sec. 27.2])

Definition 5.4. Given a smooth function h : M → R, a point x ∈ M, and a smooth vector field

F : M → TM, we say that h is trending negative with respect to the vector field F at x, denoted

h(x)�F 0, (or h(x)� 0 if the context specifies F), if,
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(h(x)< 0)∨

((
h(x) = 0

)
∧
(
∃m> 0 : (Lm

Fh)(x)< 0∧∀ℓ < m : (Lℓ
Fh)(x) = 0

))
(17)

(here LFh : M → R is the Lie derivative of h with respect to the vector field F , c.f. [105, Ch. 9]).

Similarly, we say that h is trending positive at x, denoted h(x) � 0, when −h(x) � 0. Finally, we

say that h is trending zero at x, denoted h(x)≡ 0, when ∀ℓ ∈ N : (Lℓ
Fh)(x) = 0.

That is, h(x)� 0 if and only if the following vector,

[
h(x), (LFh)(x), (L

2
Fh)(x), ...

]
(18)

is lexicographically smaller than zero [12, Def. 3.5]. Note that the closure of {x : h(x)� 0} is simply

{x : h(x)≤ 0} (as {x : h(x)< 0}⊂ {x : h(x)� 0}⊂ {x : h(x)≤ 0} for any vector field), and similarly

the closure of the set {x : h(x)� 0} is simply {x : h(x)≥ 0}.

Force–Acceleration Complementarity

For continuous time contact forces, with P = 0, when one or more contact constraints violate the

unilateral constraint cone6 U, some constraint will lift off and must be removed from the active

constraint set. This sets up a complementarity problem between the unilateral constraint cone,

Uk(λ ), if the contact is kept, and the separation acceleration d
dt
Akq̇ = Akq̈+ Ȧkq̇ if it is removed

(recall that as an active constraint the state velocity is initially Akq̇= 0). For transition from state I

to J, consider contact force (29) both in J but also in the alternative state K = J∪{k} where contact

k is maintained,

U j(λJ)� 0,A jq̈+ Ȧ jq̇= 0, ∀ j ∈ I∩ J, (19)

Uk(λJ) = 0,Uk(λK)� 0, ∀ k ∈ I\J, (20)

where the equality constraints are maintained by the dynamics on the active constraint set. Note

that ∀ j /∈ I, U j(λJ) = 0 by definition and so these constraints do not need to be checked.

6Recall that U in the normal direction is −1 according to the frame conventions of Chapter 4.
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Theorem 5.5. The non-penetrating acceleration condition at a contact k after liftoff into state J,

Akq̈+ Ȧkq̇ ≥ 0 (when such an acceleration is well defined), is equivalent to a trending negative

contact forceUk(λK)� 0 in state K := J∪{k}, i.e. (19)–(20) are equivalent to the usual formulation,

U j(λJ)� 0,A jq̈+ Ȧ jq̇= 0, ∀ j ∈ I∩ J, (21)

Uk(λJ) = 0,Akq̈+ Ȧkq̇� 0, ∀ k ∈ I\J. (22)

Proof. Let K be the selector for the kth row, i.e. K := [0, ...,0,1]. Then,

AK =

[
AJ

Ak

]
, Ak =KAK (23)

Uk(λK) =−K
(
A
†
K

(
ϒ−Cq̇−N

)
−ΛKȦK q̇

)
(24)

=−
AkM

†

J

AkM
†

JAk

(
ϒ−Cq̇−N

)
−

1

AkM
†

JA
T
k

[
AkA

†T
J −1

][ ȦJ

Ȧk

]
q̇ (25)

=−
AkM

†

J

(
ϒ−Cq̇−N

)
−AkA

†T
J ȦJq̇+ Ȧkq̇

AkM
†

JA
T
k

(26)

Akq̈+ Ȧkq̇= Ak

(
M

†

J

(
ϒ−Cq̇−N

)
−A

†T
J ȦJq̇

)
+ Ȧkq̇ (27)

where the denominator in (26) is positive (see Section 5.3.2 for details on the substitution in (25)).

Therefore a positive separation acceleration Akq̈+ Ȧkq̇ implies a negative contact force Uk(λK),

and vice-versa.

Furthermore, with or without a full rank inertia tensor, we will make the following assumption,

Assumption 5.6 (Force/Acceleration Complementarity). The complementarity problem in (19)–(20)

always has a unique solution for self-manipulation systems with frictional properties that follow

Assumption 5.9, and that solution correctly captures the behavior of the physical system.

While there has been a long line of literature (c.f. [172, Ex. 3.3]) that proves that this is al-

ways true for plastic, frictionless contacts, no result has been found to cover the limited frictional

conditions introduced in 5.1.5.
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Impulse–Velocity Complementarity

Impact at one contact location can cause another contact to break, as the contact impulse must obey

the unilateral constraint cone U j(Pλ ,J) ≥ 0∀ j ∈ J – both that the impulse in the normal direction

be positive (non-adhesive) and that the tangential impulse lie in the friction cone [35]. Any contact

point that would have violated that requirement must be dropped from the active constraint set.

In addition the post-impact velocity must not allow the removed contact point to leave with a

penetrating velocity (i.e. the impulse cannot result in a velocity “into” the surface). However with

possibly massless legs a positive separation velocity is always achievable. As an alternative require-

ment that is based only on impulses7, consider the contact impulse (10), Pλ ,J (associated with the

passage from contact I to contact J), but also the contact impulse Pλ ,K ,K := J∪{k} (associated with

the passage from contact I to alternative state K where contact k is maintained). These impulses,

along with the exit velocity, AJq̇
+, must satisfy,

U j(Pλ ,J)≥ 0,A jq̇
+ = 0, ∀ j ∈ J, (28)

Uk(Pλ ,J) = 0,Uk(Pλ ,K)< 0, ∀ k ∈ I\J, (29)

where the equality constraints are enforced by the impact law (10). Note that ∀ j /∈ I∩J, U j(Pλ ,J) =

0 by definition and so these constraints do not need to be checked.

Theorem 5.6. The non-penetrating velocity condition at a contact k after impact into state J,

Akq̇
+> 0 (where such a velocity is well defined), is equivalent to a negative contact forceUk(Pλ ,K)<

0 at impact into state K := J∪{k}, i.e. (28)–(29) are equivalent to the usual formulation,

U j(Pλ ,J)≥ 0,A jq̇
+ = 0, ∀ j ∈ J, (30)

Uk(Pλ ,J) = 0,Akq̇
+ > 0, ∀ k ∈ I\J. (31)

Proof. For this proof, let K be the selector for the kth row, i.e. K := [0, ...,0,1]. Then,

7Note that this formulation based only on impulses also simplifies the inclusion of the pseudo–impulse condition (40).
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AK =

[
AJ

Ak

]
, Ak =KAK (32)

Uk(Pλ ,K) =KΛKAK q̇
− (33)

=
1

AkM
†

JA
T
k

[
AkA

†T
J 1

][ AJ

Ak

]
q̇− (34)

=
AkA

†T
J AJq̇

−−Akq̇
−

AkM
†

JA
T
k

, (35)

Akq̇
+ = Akq̇

−−AkA
†T
J AJq̇

− (36)

=−Uk(Pλ ,K)
(
AkM

†

JA
T
k

)
(37)

where parenthetical term in the last line positive (see Section 5.3.2 for details on the substitution

in (34)). Therefore a positive separation velocity Akq̇
+ implies a negative impulse Uk(Pλ ,K), and

vice-versa.

Furthermore, with or without a full rank inertia tensor, we will make the following assumption,

Assumption 5.7 (Impulse/Velocity Complementarity). The complementarity problem in (28)–(29)

always has a unique solution for self-manipulation systems with frictional properties that follow

Assumption 5.9, and that solution correctly captures the behavior of the physical system.

While there has been a long line of literature (c.f. [112, Eqn. 2.10b]) that proves that this is

always true for plastic, frictionless contacts, no result has been found to cover the limited frictional

conditions introduced in 5.1.5.

5.1.4 Pseudo-Impulse

In this section we define an additional impulse during impact which qualitatively improves results

and eliminate some Zeno phenomena. This impulse may be thought of as a tuning parameter and

while we give some physical motivation for its magnitude the inclusion of this term is motivated

primarily by improving the qualitative behavior of the numerical simulation, e.g. by excluding

chattering and Zeno phenomena, as well as the counterintuitive liftoff of a heavy rigid block struck

by a small impulse (as discussed in Section 1.2.3). As an additional motivational example, consider

139



z

x

θ

x0

Mq̇−

Mq̇+

PG

PH

Pδ

G

H

Figure 5.3: Left: A point sliding along ground G approaches hill H. Right: Free body diagram

showing impulses at point of contact. Without Pδ no positive impulse from the ground PG is possible

for any initial momentum Mq̇− and any hill slope θ < 90◦.

a point sliding on the ground as in Figure 5.3, which hits a hill at some slope θ . The contact impulse

from the hill PH will cause the particle to break contact with the ground and leave with some velocity

sliding up the hill. This is true for any initial velocity, no matter how small, and any θ < 90◦. With

a pseudo-impulse Pδ acting in the direction of gravity, there are initial conditions that result in the

point coming to rest with impulses from both the ground and the hill (i.e. all impulses are positive

and sum to zero in Figure 5.3). Therefore we will make the following new assumption about the

physics of the system,

Assumption 5.8 (Pseudo–Impulse). The continuous time forces apply some small amount of work

during the impact process.

Specifically, consider the pseudo–impulse, Pδ ∈ T ∗C, that the contact forces would impart on

the system for some small time duration, δt ∈ R
+, during impact into state J,

Mδq̇ := lim
δt→0

∫

δt
Mq̈dt ≈ (ϒ−Cq̇−−N)δt (38)

Pδ :=A
†
JMδq̇ = A

†
J(ϒ−Cq̇−−N)δt (39)

This small time δt can be regarded as the finite duration of the (actually non–instantaneous) impact

process [145]. In the simulations shown in this chapter a magnitude of δt = 0.03s has been found to

give the best results.

The introduction of this pseudo–impulse can be viewed as a regularization via the parameter

δt that precludes certain Zeno phenomena.It has the effect of truncating the execution when a con-
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straint velocity drops below a threshold that scales with δt . Though analogous to the truncation

proposed in [138] for elastic impacts, we note that this pseudo–impulse as written only applies to

plastic impacts, and the threshold is based on the magnitude of the continuous time forces.

This pesudo-impulse is not directly applied to the system (as in [145]), both because in this

model impacts occur instantaneously and the velocity displacement δq̇ would not be uniquely deter-

mined by (39) when M is singular. Instead the pesudo-impulse is used as an extra guard condition

during impact,

U(Pλ +Pδ )> 0. (40)

This is in addition to the usual condition U(Pλ ) > 0 since the pseudo–impulse should not break

contacts that would otherwise persist. The formulation of the complementarity condition based

only on impulses in (28)–(29) admits a consistent result even given this modification (using in-

stead (30)–(31) would require considering both the impulsive and velocity implications of this

pseudo-impulse).

Pseudo–Impulse Examples

The inclusion of the pseudo–impulse at impact with contact j imposes an implicit bound on impact

velocity which determines whether contact k will be maintained. This bound is independent of

the impact velocity and it appears, anecdotally for now, that this bound truncates Zeno executions.

Consider the rectangular rigid body in Figure 5.4 of width w, height h, mass mb, and inertia Ib

(where if a uniform distribution is assumed Ib = mb(w
2+h2)/12), as studied in e.g. [75, 113, 185].

As it is falling onto the ground if one corner is touching down8 then the normal direction impulse at

that corner when the other corner hits the ground is,

U(Pλ )1n =
ż(2Ib+mb(w

2−h2)/2)

w2
(41)

8In this example the contact points are assumed to resist sliding friction, although when they are both in contact with

the ground one of the redundant tangential constraints is dropped. The phenomenon of interest occurs equally well with

frictionless contact however the analysis is simpler in the frictional case as presented here.
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t=0.00 t=0.15 t=0.30

t=0.00 t=0.15 t=0.30

Figure 5.4: A rocking block (height h = 10cm, width w = 5cm, mass m = 5kg) settling on the

ground. Top Row: Without pseudo-impulse (δt = 0). Bottom Row: With pseudo-impulse (δt =
0.03). The execution is identical until the last frame.

(note that by convention a positive velocity ż is one that is towards the ground) and the required

impulse will be negative if,

h2 > w2+
4Ib

mb

⇒ U(Pλ )1n < 0 (42)

in which case the contact will be broken no matter how slow the block is moving. The system

will exhibit Zeno behavior requiring infinite transitions in finite time as each impact removes some

energy but does not immobilize the block, as can be seen in the upper row of Figure 5.5 which plots

the vertical velocity as the system undergoes a Zeno execution.

Instead if the pseudo-impulse is considered,

U(Pλ +Pδ )1n =
ż(2Ib+mb(w

2−h2)/2)

w2
+

δtmbg

2
(43)

the contact will be broken if,
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-5

0

5

-5

0

5

δt = 0.03
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ż
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ż

Figure 5.5: Vertical velocity of a settling block for evaluations with and without the pseudo–impulse.

The execution is identical until the impact at t = 0.27s. The pseudo–impulse implicitly bounds the

vertical velocity such that an impact at speeds lower than 6.3cm/s will cause the block to come to

rest, as indicated by the dotted line.

h2 > w2+
4Ib

mb

+
δtgw

2

ż
⇒ U(Pλ +Pδ )1n < 0 (44)

where as the speed goes to zero (ż→ 0) the threshold on height that will allow the contact to persist

will grow and eventually be met. This truncation of the Zeno execution can be seen in the lower

row of Figure 5.5, where for the dimensions used the block will come to rest if the vertical speed at

impact is less than 6.3cm/s.

The pseudo-impulse is useful even in cases that are not formally Zeno, but simply involve im-

pulsive transitions that are qualitatively undesirable. An example can be seen by running the RHex

leaping simulation of Figure 5.1 with and without the pseudo-impulse term, as shown in Figure 5.6

which compares the state just before and after the rear leg touches down. At that instant the cal-

culated impulse (10) is P1n = −1.47Ns (in the normal direction on the front leg). Even though

the leg motor is applying maximum torque trying to keep the leg on the ground the small negative
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t=0.0110 t=0.0115 t=0.0120

t=0.0105 t=0.0110 t=0.0115

Figure 5.6: Keyframes around the impact of the second leg with the ground. Top Row: Without

pseudo-impulse (δt = 0). Bottom Row: With pseudo-impulse (δt = 0.03). Note that there is a slight
difference in touchdown time due to similar discrepancies around the time of the first leg touchdown.

impulse will cause the leg to separate, and then the motor torque will quickly accelerate the leg

back to the ground (though recall that even massless legs are assumed to have finite acceleration,

thus the leg may return quickly but not instantly). With the pseudo-impulse this is balanced out by

Pδ ,1n = 7.91Ns, and the leg does not leave the ground (as would be the case on the real robot in

this configuration to within modeling precision). If the induced impulse were much larger then the

desired result may be for the front leg to lift off the ground, while a much smaller impulse would

clearly not break the front leg’s contact. The δt term is in essence a tuning parameter that determines

the threshold between a quasi–static regime (where contacts are maintained) and a dynamic regime

(where impulses may break existing contacts).

Impulsively breaking contact at the wrong time is an even bigger problem when considering a

full behavior and not just analyzing an individual impact event. As Figure 5.7 suggests, without a

pseudo-impulse this impulsive liftoff can lead to chattering. In this case starting around t = 0.023

the front leg lifts off but the continuous time forces return the leg to the ground after a short time.

When the front leg impacts the ground, the rear leg then impulsively breaks contact, and a cyclic

oscillation begins. This behavior is not quite a Zeno-execution, as the finite acceleration of the leg

in the air results in only finitely many transitions in a finite time, however these transitions are still

qualitatively undesirable.
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Figure 5.7: Comparison of the front leg normal direction ground reaction force for evaluations with

and without the pseudo-impulse.

5.1.5 Friction

While this chapter is not focused on methods for modeling friction, including friction in some

form is unavoidable. In continuous time, the frictional assumptions for the RHex model (Assump-

tions C.3 and C.4 of Section 4.2.3) (as show in Figure 5.1) are that the body has a low coefficient

of friction and does not resist tangential forces while the leg’s rubber feet have a high coefficient of

friction and therefore always do9. This a priori assumption about friction is certainly not a good

model for every situation – consider what happens when RHex’s legs push against each other, as

with the vertical leap described in Chapter 3. In order to model such a behavior the leg contact

points must be allowed to transition to sliding contact when the contact forces reach the friction

cone in the tangential direction, Uk(λ )≥ 0 (Section 4.1.3), though like the body contact points with

a kinetic coefficient of friction µk = 0 (so that the jamming problems are again avoided). Adding

this contact mode enables for example the simulation of the vertical leap shown in Figure 5.8 or

the leap onto a ledge shown in Figure 5.9. The transition from sliding to sticking occurs when the

tangential velocity drops to zero, i.e.Akq̇= 0, although care must be taken to avoid cycling between

9Nearly always in practice – in Figure 5.1 the frictional coefficient, µ , was set to be the relatively large but finite

values of 1.8 for the front leg and 2.5 for the rear.
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stick and slip at zero velocity.

For the impact problem, in order to support the assumption of existence and uniqueness of a

solution we will assume that,

Assumption 5.9 (Friction). All contact points with Coulomb friction are attached only to massless

links. Contact points without friction are assumed to never resist sliding motion, and all contact

points that are sliding have no kinetic coefficient of friction.

Therefore any conflict in impulses during impact can be resolved by simply removing that con-

tact from the active set (see [167] for pathologies that arise when this assumption is relaxed). As a

massless link, it can always rotate out of the way fast enough (as discussed above in Section. 5.1.3).

The complementarity test of (28)–(29) is thus taken to include both the normal and tangential com-

ponents of the friction cone.

5.2 Hybrid Dynamical System

The continuous time dynamics presented in Chapter 4 and the impulsive dynamics presented in

this chapter can be combined to give a complete system description, as was done in the generation

of Figures 5.1, 5.8, and 5.9. The code that generated those plots (as well as the analytical and

numerical result from Chapter 4) is available online10. This section summarizes these modeling

ideas as a hybrid system that the simulation code is an implementation of.

5.2.1 The General System

In the following definitions we make use of the natural (disjoint–union) topology on the hybrid state

space; see [85] or [24, Section II] for more details.

Definition 5.1. A hybrid dynamical system, is a tupleH := (J ,Γ ,D,F ,G,R), where:

• J = {I,J, . . . ,K} is the finite set of discrete states;

• Γ ⊂ J ×J is the set of discrete transitions, forming a directed graph structure over J ;

10http://kodlab.seas.upenn.edu/Aaron/Code
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t=-0.05 t=0.0

t=0.1 t=0.15 t=0.2

t=0.05

Figure 5.8: Keyframes from RHex simulation leaping vertically to a height of 37cm. Blue arrows

show contact forces (relative scale 10N = 1cm) while the red arrow shows body velocity (relative

scale 10cm/s= 1cm).
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t=0.0 t=0.05 t=0.1

t=0.15 t=0.2 t=0.25

t=0.3 t=0.35 t=0.4

Figure 5.9: Keyframes from RHex simulation leaping onto a 73cm ledge. Blue arrows show contact

forces (relative scale 10N = 1cm) while the red arrow shows body velocity (relative scale 10cm/s=
1cm).
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• D =
∏

I∈J DI is the collection of domains, where DI is a smooth manifold with corners;

• F :D→ TD is a smooth hybrid map that restricts to a vector field FI = F|DI
for each I ∈ J ;

• G =
∏

(I,J)∈Γ GI,J is the set of guards, where GI,J ⊂ DI and GI,J ∩GI,K =∅ for (I,J),(I,K) ∈

Γ ,J 6= K;

• R : G →D is a continuous map called the reset that restricts as RI,J =R|GI,J : GI,J → DJ for

each (I,J) ∈ Γ .

Roughly speaking, an execution of a hybrid dynamical system is determined from an initial

condition in D by following the continuous–time dynamics determined by the vector field F until

the trajectory reaches the guard G, at which point the reset map R is applied to obtain a new initial

condition. This notion, and Definition 5.1, are formalized in [85].

5.2.2 The Self-Manipulation System

This section will define the self-manipulation system (Chapter 4 and by the analogy of that chapter,

equivalently a manipulation system [134]), where individual contact modes are built from the set of

possible contact constraints K =Kn∪Kt . Here, Kn denotes the set of normal penetration contacts,

where each i ∈ Kn specifies a holonomic constraint of the form {(q̇,q) ∈ TQ : ai(q) = 0} where

ai ∈Cr(Q,R), and Kt denotes the set of tangent non–sliding contacts, where each i ∈Kt specifies a

nonholonomic constraint of the form {(q̇,q) ∈ TQ : Ai(q)q̇= 0} where Ai ∈Cr(Q,T ∗Q). We note

that there is an assignment α :Kt →Kn of tangent contacts to normal contacts since it is not phys-

ically permissible for i ∈ Kt to be active without some associated α(i) ∈ Kn to be simultaneously

active as well.

Definition 5.2. The self-manipulation hybrid system is defined as follows,

Indexing Set

The set of all physically permissible combinations of contact constraints is given by
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J =
{
I ∈ 2K | ∀i ∈ I∩Kt : α(i) ∈ I

}
. (45)

As mentioned above, it is not physically permissible to have I ∈ J such that ∃i ∈ I∩Kt : α(i) 6∈ I.

Edges

The set of edges is any pair of distinct domains,

Γ = {(I,J) ∈ J ×J } (46)

where specific problems may allow for further restrictions where, e.g., the guard (defined below) is

the null set.

Domains

The domain associated with a contact state I ∈ J is the subset of the ambient tangent bundle TQ

that satisfies the normal penetration and tangent non–sliding constraints,

DI ={(q̇,q) ∈ (TQ) : aI∩Kn
(q) = 0,AIq̇= 0,ai(q)≥ 0 ∀ i ∈ Kn\I} . (47)

Recall that Q := Θ×SE(d) is the joint space combined with the position space of the body.

Flows

The vector field on each domain consists of the self-manipulation dynamics for q̇ (as in (3) and

Section 4.1.9) and trivial dynamics on q (as q̇ is a part of the state),

FI(q̇,q) =
(
M

†
(ϒ−Cq̇−N)−A

†T
I ȦIq̇, q̇

)
. (48)

The control input τ ∈ T ∗Θ that appears in ϒ is prescribed by a smooth function of state τ ∈

Cr(TQ,T ∗Q) (for example a fixed-voltage motor model τi= κPκG(1−κGθ̇i) Section 4.3.3sec:pronkdtakeoff).
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Guards

The guards are easiest to define in unison and then the subsequent state can be calculated afterwards,

GI = {(q̇,q) ∈ DI :(∃ k ∈ Kn\I,ak(q) = 0∧ak(q)� 0) (49)

∨ (∃ k ∈ Kt\I,Akq̇= 0) (50)

∨(∃ k ∈ I,Uk(λI)� 0)} . (51)

The subsequent state J is determined by adding or subtracting contacts from I according to

which of the conditions (49)–(51) are active, and subsequently removing any contacts that would

violate the complementarity conditions (19)–(20) or (28)–(29). As the frictional assumptions guar-

antee a unique solution any algorithm that reaches that solution may be used.

For purposes of analysis, it will be necessary to explicitly define the individual guards, and

formally the execution will check if the state is in any of the guards separately. This definition, as

well as a guarantee that the separate guards are disjoint, is included in [85].

Reset Maps

With the definition of impact maps given above, the reset map is,

RI,J(q̇,q) =
[
q̇−∆q̇, q

]
=
[
(q̇−A

†T
J AJq̇), q

]
(52)

Note that for takeoff events, the prior velocity will already agree with the new constraint set and

therefore the impact map will have no effect.

5.3 Appendix to Chapter 5

5.3.1 Linear Algebra

For additional notes on the Schur complement and block matrix inverse, see e.g. [40, 81]. Given a

block matrix M defined as,
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M :=

[
A B

C D

]
(53)

when submatrices A or D are nonsingular, then the Schur complement of A or D in M is,

SA := D−CA−1B (54)

SD := A−BD−1C (55)

which is sometimes written as (M|A) or (M|D), respectively.

IfM is also nonsingular, the inverse of M is,

[
A B

C D

]−1

=

[
A−1+A−1BS−1

A CA−1 −A−1BS−1
A

−S−1
A CA−1 S−1

A

]
(56)

=

[
S−1
D −A−1BS−1

A

−D−1CS−1
D S−1

A

]
(57)

Furthermore if M is positive-definite, then M−1 is as well, as is the leading submatrix A. Since

detM = (detA)(detSA), clearly the Schur compliment must also be positive definite.

5.3.2 Matrices Used in Proofs

A common matrix inverse that will come up is,

AK =

[
AJ

Ak

]
(58)



[

M AT
J

AJ 0J×J

] [
AT
k

0J×1

]

[
Ak 01×J

]
0



−1

= (59)




[
M

†

J A
†T
J

A
†
J ΛJ

]
+

[
M

†

J A
†T
J

A
†
J ΛJ

][
AT
k

0

]
S−1
A

[
Ak 0

]
[

M
†

J A
†T
J

A
†
J ΛJ

]
-

[
M

†

J A
†T
J

A
†
J ΛJ

][
AT
k

0

]
S−1
A

- S−1
A

[
Ak 0

]
[

M
†

J A
†T
J

A
†
J ΛJ

]
S−1
A



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=




[
M

†

J A
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This allows us to express A
†
K ,M

†

K , and ΛK in terms of A
†
J ,M

†

J , and ΛJ together with the added

constraint Ak,
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T
k ΛK,k (66)

5.3.3 Proof of Lemma 5.2

Proof. Recall that limε→0Mε =M and that Mε is invertible for all ε ∈ (0, ε̄), for some ε̄ > 0. For

all ε ≥ 0, define M
†

ε , A
†
ε , and Λε by replacing M with Mε in (2). Using (5)–(7) we can rewrite the

dynamics,
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where (70) and (75) are identically equal to the desired formulation of (8) and (9) when M0 is

non-singular.

5.3.4 Proof of Lemma 5.3

Proof. Recall that limε→0Mε =M and that Mε is invertible for all ε ∈ (0, ε̄), for some ε̄ > 0. For

all ε ≥ 0, define M
†

ε , A
†
ε , and Λε by replacing M with Mε in (2). Then using equation (6) we can

rewrite the impulse (where all constraints A are taken to be for the target contact mode J),

Pλ = A†MA†TAq̇− = lim
ε→0

A†
εMεA

†T
ε Aq̇− (76)
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ε AT )−1Aq̇− (78)

which is identically equal to (11) when M0 is non-singular.
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Chapter 6

Conclusion

Over the past few years the RHex robot has become much more capable and field-ready, due in part

to significant hardware improvements of the X-RHex and XRL designs that have led to new levels

of strength and robustness. High performance behaviors have expanded the navigable terrain, and

new analytical tools have helped to distill design insight from these behaviors.

Chapter 2 presented a spectrum of motor sizing tasks, as well as documenting two specific

case studies. In the first, a motor for an inertial tail is selected using an optimal gear ratio that is

calculated analytically. With the tail the robot is capable of landing on its feet when dropped or

when falling off of a ledge. Next the design process for selection of the motor for X-RHex reveals

the importance of thermal considerations. A new metric, the heat coefficient, is used to compare the

thermal performance of motors with differing morphologies.

In addition Chapter 2 introduced and documented empirically the performance of a software

contact-event driven disturbance identification and recovery system, based on careful actuator mod-

eling. Initial results demonstrate that our ground contact estimates successfully cue appropriate

behavioral transitions, including effective reaction to the sudden and unexpected loss of a limb dur-

ing locomotion followed by smooth, safe transition to a new, more stable gait. As a follow on to this

work, these estimation techniques were used as a sensor for terrain classification [139]. This allows

the robot to adapt gaits based upon terrain, such as when suddenly encountering a sandy rather than

than expected hard surface [107]. Whereas the presented methods only estimate discrete leg contact,
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the simple robot models presented in Chapter 4 should allow for estimation of the magnitudes of

ground reaction forces as well [110].

Chapter 3 explored the space of legged transitions from complete rest to full flight as generated

by combinatorial mixtures of various hybrid dynamical systems indexed by the cells of a “ground

reaction complex”. The very regular adjacency relations implied by this topological space organize

these sequential mixtures in a sufficiently simple manner as to allow the systematic (“grammatical”)

generation of all possible leaps. This enumeration affords a number of new behaviors that signifi-

cantly extend the range of terrains that the RHex robot can negotiate. Near term future extensions

will focus on formal methods of design that exploit this analysis more systematically and effectively

than the “hand-crafted” behaviors reported here. Moreover, we are interested in a broader range of

dynamical transitions, particularly ones exploiting compliance, including the novel prospect of us-

ing the leg springs in extension introduced here.

Chapter 4 presented a formal framework for the generation of quasi-static and dynamic equa-

tions of motion for legged robots across multiple contact conditions. This framework matches as

closely as possible the modeling decisions typically used for the analysis of multi-fingered hands,

thereby highlighting the similarities and differences between the two classes of problems. The re-

sulting systematic, unified and general methodology for modeling all contact conditions of a legged

robot promotes analysis of a rich variety of behaviors for common scenarios that arise as legged

robots leave the laboratory and enter the real world.

The utility of this methodology is demonstrated for platform, behavior, and controller design

in the context of a specifically imagined episode in an autonomous mission of a RHex robot. The

analysis of these behaviors recall from the manipulation literature the notion of a grasp map, G,

whose null space introduces a transparent account of internal and external forces, yielding a simple,

general, and provably correct algorithm for standing still over unknown terrain with minimal power

draw. Reducing the influence of the highly varied mechanics across the multiplicity of contact

conditions to the appearance of one term promotes a straightforward comparison of the quality

of exteroception across all quasi-statically reachable configurations, enabling the robot to act as

as an active laser wall/cliff detector. Formal reasoning about the intrinsic conflict between leg
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Figure 6.1: XRL scrambling onto a ledge. Frames taken every 100ms.

torques and liftoff speed sheds new light on the problem of how to leap forward most energetically

without pitching. Finally, in each of these task settings, the formal nature of the results affords clear

answers to morphological design questions such as the consequences of leg shape. Tracing back

more systematically similar threads between the various design parameter values and the behavioral

results they promote or constrain ought to be useful in future redesign of this and other legged robots.

Chapter 5 extends these idea to account for the impulsive dynamics necessary for transitioning

between contact conditions while still ensuring compatibility with certain simplifying assumptions.

The self-manipulation hybrid system presented here is not intended to produce the highest fidelity of

numerical accuracy. Instead it is an analytically tractable system that is compatible with modeling

assumptions, such as massless limbs, while still producing qualitatively correct results, such as the

simulation of the various RHex leaps introduced in Chapter 3. Future work includes proving in

general what is anecdotally appears true for the RHex model — the system is deterministic and

non-blocking [82], truncates Zeno executions [1, 138], and has sufficient structure to arrive at the

conclusions suggested in Chapter 3.

As dynamic robot behaviors become more capable and well understood, the need arises for a

wide variety of equally capable and systematically applicable transitions between them. This thesis

presented some behaviors that go beyond current levels of understanding, for example Figure 6.1,
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the second stride in the leap-grab of Figure 3.1, intended to pull the robot up onto the ledge. That

behavior involved a cyclic path through the ground reaction complex (the lower leg pushes three

separate times), took full advantage of the leg compliance (in particular stretching the legs), and

certainly involved subtle properties of friction. All of these represent challenges to the formal

understanding of this behavior, but also great opportunities for future research. The analytical tools

presented in this thesis only scratch the surface of what is needed to fully understand such behaviors,

and to automate the distillation of design insight.
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