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Abstract

Rigid bodies, plastic impact, persistent contact, Coulomb friction, and massless limbs are ubiquitous simplifica-

tions introduced to reduce the complexity of mechanics models despite the obvious physical inaccuracies that each

incurs individually. In concert, it is well known that the interaction of such idealized approximations can lead to

conflicting and even paradoxical results. As robotics modeling moves from the consideration of isolated behaviors

to the analysis of tasks requiring their composition, a mathematically tractable framework for building models that

combine these simple approximations yet achieve reliable results is overdue. In this paper we present a formal hy-

brid dynamical system model that introduces suitably restricted compositions of these familiar abstractions with the

guarantee of consistency analogous to global existence and uniqueness in classical dynamical systems. The hybrid

system developed here provides a discontinuous but self-consistent approximation to the continuous (though possibly

very stiff and fast) dynamics of a physical robot undergoing intermittent impacts. The modeling choices sacrifice

some quantitative numerical efficiencies while maintaining qualitatively correct and analytically tractable results with

consistency guarantees promoting their use in formal reasoning about mechanism, feedback control, and behavior

design in robots that make and break contact with their environment.

1 Introduction

Simple models of complex robot–world interactions are key to understanding, implementing and generalizing behav-

iors as well as identifying and composing their reusable constituents to generate new behaviors (Full and Koditschek

1999). There is strong appeal to using familiar physical simplifications such as rigid bodies, plastic impacts, persistent

contact, Coulomb friction, and massless limbs in building up simple robotics models. Their coarse approximation

to the underlying physical processes of interest are widely understood to offer the right combination of analytical

tractability and physical realism in isolation. However, it is also widely understood that such individually useful sim-

plifications can introduce catastrophic side-effects when combined (e.g. in Chatterjee (1999), Dupont and Yamajako

(1994), Keller (1986), Mason and Wang (1988), Painlevé (1895), Trinkle et al. (1997) and others, as discussed in

Section 1.3).

In this paper we assemble a framework of reasonable physical assumptions and accompanying mechanics to de-

velop a formalism for combining them at will in the construction of a simple hybrid system model for contact robotics

that yields a provably consistent1 and empirically useful approximation to many behavioral settings of interest. As

an example of the value of such mathematical models, new work (Brill et al. 2015) uses the formal properties of our

self-manipulation model to develop rigorous correctness (or, non-existence) proofs for desirable robot behaviors – in

that case, gap crossing and ledge mounting. However, while the primary goal of this paper is not numerical analysis,

simulation does provide a useful way to visualize key features of the model and the utility of some of the simplifying

assumptions. Numerical results obtained through a custom Mathematica simulation (described in Section 4.4) are used

throughout the paper to illustrate key concepts, and to suggest the fidelity to physical settings of interest.

For example, our model generates simulations2 of the leaping behavior depicted in Figure 1 that recreate the

empirical results of Johnson and Koditschek (2013b) qualitatively (i.e., predicts the same salient features though not

∗Corresponding author; Robotics Institute, Carnegie Mellon, Pittsburgh, PA, USA, e-mail: amj1@andrew.cmu.edu
1 Here, consistent refers to a combination of properties detailed in Section 3.4 analogous to the guarantee of global existence and uniqueness of

solutions for a classical dynamical system.
2For this simulation the middle and rear legs are used with a maximum current limit of 20A, a pseudo-impulse (defined in Section 2.7) magnitude

of δt = 0.03 (hand selected to give the qualitatively best overall results), relative leg timing of t2 = 0.01 (i.e., the middle legs are started 0.01s before

the rear legs), and once a leg has lifted off the ground it is slowly rotated upwards out of the way. Remaining model parameters are as listed in

(Johnson and Koditschek 2013a, Sec. III, Appendix G).
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Figure 1: Keyframes from RHex simulation leaping onto a 20cm ledge. Blue arrows show contact forces while the

red arrow shows body velocity.

necessarily the same metric results), yet enjoys a combination of mathematical properties that we believe will provide

a foundation for reasoning about and thereby generalizing the platform design and control strategies that gave rise to

such behaviors. Of course, physical fidelity is not mathematically demonstrable and the relevance of the modeling

choices we propose (i.e., the empirical sway of this formally self-consistent model) can only be established over the

long run in practice by the breadth of physical phenomena they usefully approximate, regardless of the simplification

and ease of analysis they afford.

The paper is structured as follows. This section finishes with a summary of contributions, followed by a discussion

of their relation to prior work. Section 2 introduces the various simplifying physical modeling assumptions and draws

out some of the mathematical consequences bearing on their relationships to alternative formulations and to each other.

Section 3 assembles from these pieces a formal hybrid dynamical system model and proves its consistency. Section 4

reviews the scope of physical settings admitted by our assumptions and discusses the most delicate aspects of their

interplay with our formal results, providing additional examples that help give a broader context for the applicability

of the theory. Section 5 concludes with some final thoughts on the implications of this work and future directions. An

extensive Appendix works through the details of selected proofs and provides additional background material.

1.1 Contributions of the Paper

This paper extends a framework for manipulation (Murray et al. 1994) and self-manipulation (Johnson and Koditschek

2013a) modeling into a formal hybrid dynamical systems specification whose discrete modes are indexed by the active

contact constraint set in a manner guaranteed to produce a unique execution from every initial condition under mild

conditions on the motor feedback control laws. The foundation on which we rest this physically simple and math-

ematically tractable modeling framework arises from Assumptions A1–A12, introduced in Section 2 and discussed

further in Section 4.1, comprising various familiar phenomenological representations and physically natural hypothe-

ses, including: rigid bodies (A1), massless limbs (A4), plastic impact (A8), and static friction (A12). It is known

that in general these properties are not mutually consistent, however we formally demonstrate that the particular set

of assumptions included here provides a well defined, deterministic, and computationally well-behaved model. The

physical fidelity may, in some important applications contexts that we point out, necessarily remain something of a

leap of faith relative to the still incomplete state of the theory of rigid body mechanics. To the best of our knowledge

this is the first time any succinctly stated list of physical assumptions about rigid body mechanics has been shown to

yield a consistent hybrid dynamical system with unique and globally defined executions.

Our central technical contribution is the derivation of a consistent extension of Lagrangian dynamics, Newtonian

impact laws, and complementarity contact conditions to systems that have certain rank deficiencies in their inertia ten-

sor that agrees with (i.e., when rank is restored, maintains equivalence to) the nonsingular case (Lemmas 4, 5, & 8 and

Theorems 1 & 2). The possibly massless dynamics motivate a reformulation of complementarity as a logical equiv-
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alence (Lemma 9) so that its unique solvability (for both force–acceleration and impulse–velocity complementarity

problems, Assumptions A9 & A10, respectively) is shown to imply a unique partition of the guard set (i.e., those states

which are to undergo a mode transition) into disjoint components labeled deterministically by the destination mode of

the transition (Theorem 5). These conditions are expressed in terms of a higher order scalar relation (≺, Definition 1),

and we exhibit certain properties of this relation that clarify its role in determining the guard set (Lemmas 1–3).

Even without the introduction of massless limbs there exist many opportunities for repeated (and even Zeno3)

discrete transitions that seem unlikely to add much physical insight (and, speaking practically, generally degrade the

numerical performance of simulations based upon this model). Hence, to resolve the qualitative problem of spurious

transitions at arbitrarily low velocities (Lemma 10), we introduce a new pseudo-impulse, which acts on the discrete

transitional logic (rather than the continuous dynamics), imposing an implicit bound on contact velocity below which

such contacts persist (Theorem 3), precluding certain Zeno phenomena (Theorem 11).

As a structure to combine these physical models and assumptions, this work presents the formal definition of

the self-manipulation hybrid system in Definition 5 (along with Definitions 2–4), and the formal demonstration of its

consistency (including that it is deterministic and non-blocking, Theorems 4–9 and Lemmas 6 & 7), incorporating a

well-behaved notion of completion in case of a Zeno execution (Definition 6, Theorem 10, Corollary 1) by adapting to

this more elementary setting the measure theoretic arguments of Ballard (2000).

1.2 Reader’s Guide

We anticipate that different readers will approach this paper with diverse goals and backgrounds. In this section we

suggest sections that may have the greatest relevance with respect to specific interests. All readers are encouraged to

start with the setup and notation explained in Section 2.1 and summarized in Tables 1 and 2.

• For readers interested in instantiating a hybrid dynamical system model of a specific robot, the most relevant

section is Section 3.2, which is based on the assumptions and derivations in Section 2 and definitions in Sec-

tion 3.1. The continuous dynamics in any particular contact mode is based on Murray et al. (1994) for manip-

ulation and Johnson and Koditschek (2013a) for self-manipulation systems (whose differences are summarized

in Section 2.2). See also the discussion on numerical simulation of this system in Section 4.4.

• Some readers may be interested in the relationship of this model to the still evolving theory of rigid body

mechanics. They will likely wish to focus on our treatment of: massless bodies and singular inertia tensors

(Section 2.3, with implications throughout Section 2 and in Section 4.2), Lagrangian dynamics (Section 2.4),

impulsive dynamics (Sections 2.5, 2.7, and 4.3), complementarity systems (Section 2.6), friction (Section 2.8),

and accumulation points (Section 3.5). See also the discussion in Section 4.1 on these mechanics assumptions.

• Those most interested in the properties of this model considered as a mathematical object will likely wish to

focus on the hybrid dynamical system itself which is presented in Sections 3.1 and 3.2, with various properties

related to existence and uniqueness of executions proven in Sections 3.3 and 3.4. Zeno considerations are

presented in Section 3.5, based in part on the pseudo-impulse presented in Section 2.7, and discussed further in

Section 4.5.

• Readers interested in the particular example of the RHex robot used in, e.g., Figure 1 can find details on the

model (lengths, masses, etc) in Johnson and Koditschek (2013a) and details on the behaviors this paper aims

to model in Johnson and Koditschek (2013b). Of particular interest for modeling similar robots may be the

treatment of massless legs (Sections 2.3 and 4.2), the pseudo-impulse (Section 2.7, in particular the example in

Section 2.7.2), and the full self-manipulation hybrid system model (Section 3.2).

1.3 Relation to Prior Literature

This paper aims to promote simplified physics based models of robotic systems for purposes of analysis. Doing so

entails integrating results and ideas that have developed somewhat independently across several different longstanding

technical fields. For surveys of some of these ideas (with a focus on numerical considerations), see e.g. Brogliato et al.

(2002), Gilardi and Sharf (2002).

3An execution of a hybrid dynamical system exhibits the Zeno phenomena if it undergoes an infinite number of discrete or logical switches in

finite time (Definition 6).
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1.3.1 Numerical Simulation Methods

While this paper is focused on a model for analysis and not simulation, it is informative to consider how other simula-

tion strategies compare. The model developed here generates trajectories from the flow of hybrid dynamical systems

defined by differential-algebraic equations (DAEs) between discrete transitions and so, in the language of (Brogliato

et al. 2002, Sec. 6.3), simulations of these trajectories could be obtained4 via an event-driven scheme, as opposed to a

penalized-constraint/continuous-contact scheme, or a time-stepping scheme.

Event-driven schemes have a long history, e.g. (Wehage and Haug 1982), (Pfeiffer and Glocker 1996), (Brogliato

et al. 2002, Sec. 6.7), and include the hybrid dynamical systems formulations outlined in the next section. Typically

they entail alternating between integration of smooth dynamics involving (usually) finite forces from contacts and

the discontinuous handling of constraint addition or deletion (the “events”). Here, we extend these methods and

codify the event-driven scheme in terms of a formal hybrid dynamical system. In contrast, some event-driven schemes

formulate the contact dynamics as always consisting of impulses, e.g. Mirtich and Canny (1995). These impulse-

based simulations combine both smooth and discontinuous contact interactions into impulses, with a continuous-time

ballistic trajectory in between events.

Time-stepping schemes, which also account for contact interactions only using impulses by integrating applied

forces over small time steps, are numerically efficient especially for systems with large numbers of constraints, see

e.g. (Stewart and Trinkle 1996) (Anitescu and Potra 1997), or (Brogliato et al. 2002, Sec. 7). These models can be

relaxed (by allowing contact forces and impulses to arise even before contact occurs) to enable efficient numerical

simulation and motion synthesis (Drumwright and Shell 2011, Todorov et al. 2012). These methods allow contact

constraints to be added or removed at any time step, but only once per time step. Furthermore, no distinction between

continuous contact forces and discontinuous impulses is made. In this way these methods relax the requirements of the

Principle of Constraints, i.e. that, “Constraints shall be maintained by forces, so long as this is possible; otherwise, and

only otherwise, by impulses” (Kilmister and Reeve 1966, p. 79) (as noted e.g. in Stewart and Trinkle 1996, Section 1).

Their advantage in avoiding many of the well explored physical paradoxes of rigid body mechanics (including Zeno

phenomena (Drumwright 2010) as well as apparent contradictions between frictional forces and impulses discussed

in Section 1.3.5) seems to come at the cost of persistence of contact. In contrast, here, persistence is one of the key

simplifying modeling assumptions, expressing our intuitive experience of limbs interacting with the world, enabling

some of the other assumptions, and affording our strong formal results. Despite being targeted at a different numerical

integration scheme, many of the results in this paper, such as the consistent handling of massless limbs, are potentially

applicable to time-stepping schemes.

1.3.2 Hybrid Dynamical Systems

This paper models manipulation and self-manipulation systems using a hybrid systems paradigm that assumes instan-

taneous transitions. Though we develop our (so-called) self-manipulation hybrid dynamical system for a similar class

of mechanical systems as that considered in (van der Schaft and Schumacher 1998, Ex. 3.3), we specialize from the

more general class of hybrid automata considered in (Lygeros et al. 2003, Def. II.1) to facilitate connections with the

broader hybrid systems literature. Our self-manipulation system is closely related to the n-dimensional hybrid system

of (Simic et al. 2005, Def. 2.1), the simple hybrid system of (Or and Ames 2011, Def. 1), and hybrid dynamical system

of (Burden et al. 2015b, Def. 1) as we require: (i) multiple disjoint domains of varying dimension, disallowed by Or

and Ames (2011), Simic et al. (2005); (ii) guards with arbitrary codimension, disallowed by Burden et al. (2015b);

and we desire (iii) more analytical and geometric structure than is provided by the general framework in Lygeros

et al. (2003), specifically domains that are differentiable manifolds and guards that are sub-analytic. Note that (i) is

precluded in Or and Ames (2011), Simic et al. (2005) only for notational expediency since any multitude of domains

may be embedded as disjoint submanifolds of a high-dimensional Euclidean space. The condition (ii) is excluded by

Burden et al. (2015b) since it is generally incompatible with the results contained therein.

One property of hybrid systems that is crucial to establish for the present setting is that the guards are disjoint,

i.e. no state is a member of two distinct guards, so there is no ambiguity as to which reset map to apply. This key

property yields the proof that the model is deterministic (Lygeros et al. 2003, Def. III.2). Furthermore the system is

set up such that every point on the boundary of the domain where the flow points outward is a member of a guard, thus

guaranteeing that the system is non-blocking (Lygeros et al. 2003, Def. III.1), i.e. the execution continues for infinite

time.

4E.g. using the algorithm proposed in Burden et al. (2015a) for hybrid control systems.
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The self-manipulation hybrid system developed in this paper uses the active contact constraints to define the dis-

crete state or status (that we call the mode), as in e.g. Brogliato et al. (2002), Hurmuzlu and Marghitu (1994). However

even when starting with a simple Lagrangian hybrid system without modes for every contact condition it appears to

be useful to add such states to allow executions to be completed beyond a so-called “Zeno equilibrium” (Ames et al.

2006, Or and Ames 2011). Furthermore, the pseudo-impulse we introduce avoids certain Zeno executions by allowing

the system to remain in a constrained mode after finitely many transitions, in a manner analogous to but formally

distinct from the truncation proposed in Ames et al. (2006), Or and Ames (2011).

1.3.3 Consistent Complementarity

Any formulation that allows for persistent contact through impact must determine which contacts to make active and

which to remove5. When there is no impulse (i.e., no constraint to add, but one or more constraints have violated

the unilateral constraint cone), the removal process is called force–acceleration complementarity, as it is commonly

modeled by a complementarity problem involving contact force and separating acceleration, e.g. (Trinkle et al. 1997,

Eqn. 12), (Brogliato et al. 2002, Eqn. 10), where in the simplest case of a single contact point with zero or negative

contact force it is simply removed. This complementarity problem framework can introduce paradoxical consequences

in certain physical problem settings, for example in taking the rigid limit of a deformable body (Chatterjee 1999). It

can also be computationally efficient to relax the hard constraints of the complementarity conditions, resulting in a

convex optimization problem (Drumwright and Shell 2011, Todorov 2011).

An impulse induced from one or more contact constraints becoming active generally necessitates the removal of

other constraints, specifically, those that require a negative impulse to remain. When invoked as a modeling principle,

this impulse–velocity complementarity precludes a simultaneous impulse and separation velocity at a particular con-

tact, e.g. (Lötstedt 1982, Eqn. 2.10b), (Brogliato et al. 2002, Eqn. 9). Imposing this modeling discipline affords the

well established benefit of yielding a unique post-collision state for collisions modelled as plastic frictionless impacts

(Cottle 1968, Heemels et al. 2000, Ingleton 1966, van der Schaft and Schumacher 1998). Unfortunately further gener-

alizations can lead to inconsistencies and ambiguities (Chatterjee 1999, Hurmuzlu and Marghitu 1994, Ivanov 1995,

Seghete and Murphey 2010). The existence and uniqueness of a solution must therefore be separately established in

each physical circumstance that includes friction – or merely be assumed.

Massless legs introduce new problems into the complementarity problem. The massless leg condition in general, as

introduced in (Johnson and Koditschek 2013a, Assumption C.6) and also used in countless prior works, e.g. (Blickhan

1989, Holmes et al. 2006, Kajita et al. 1992), allows for the neglect of certain states deemed inconsequential to the

dynamics of interest when unconstrained (of course, the appropriateness of this neglect is task dependent rather than

in any way intrinsic to the underlying physics, c.f. (Johnson and Koditschek 2013a, Sec. IV.C.5) or (Balasubramanian

et al. 2008)). Indeed a massless leg that is not touching the ground is unconstrained and its position can be taken

as arbitrary (or regarded as evolving according to dynamics sufficiently decoupled as to be considered independent),

as used in the behavior analysis in (Johnson and Koditschek 2013a, Sec. IV.C.3). However the complementarity

condition as used in e.g. (Lötstedt 1982, Eqn. 2.10b), (Brogliato et al. 2002, Eqn. 9), and listed in (51)–(52) is ill-

posed in the absence of mass since there is no well-defined separation velocity or acceleration, nor anything precluding

all massless contact points from always separating (at least for the dynamic model of interest here, as opposed to a

quasistatic model, (Trinkle and Zeng 1995)). Instead here we reformulate the complementarity condition as (46)–(47)

to not depend on the separation velocity.

1.3.4 Impact Mechanics

The usual Newtonian impact law (as in e.g. (Chatterjee and Ruina 1998, Eqn. 3), (Featherstone 2008, Eqn. 11.65) and

many others) can be thought of as a mass-orthogonal projection onto the constraint manifold as used in e.g. augmented

Lagrangian techniques (Bayo and Ledesma 1996, Eqn. 25). More generally, Moreau (1985) showed that impact

problems can be modeled using measure differential inclusions. The algebraic plastic impact law involves inversion

of the inertia tensor, which precludes the possibility of massless limbs and necessitates the reformulation given in this

paper. Even if there are no truly massless links, a nearly massless body segment yields a poorly-conditioned inertia

tensor (Johnson 2014, Sec. 5.1.1), leading to similar formulations as the one presented here in (Westervelt et al. 2003,

Eqn. 9) or, for continuous time dynamics, (Holmes et al. 2006, Sec. 4.3) (Featherstone 2008, Eqn. 3.17).

5The removal ends up being the harder question, as “there is no problem in deciding when and which constraint to add to the active set since

there is a constraint function to base the decision on. The problem of dropping constraints is more delicate...” (Lötstedt 1982, p. 283).
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In this paper we restrict our attention to systems modeled as exhibiting only perfectly plastic impact (perfectly

inelastic impact). In the elastic impact case, it is necessary to consider the relative stiffness of contact points; depending

on the restitution law invoked, multiple outcomes are consistent with the constitutive assumptions (Chatterjee and

Ruina 1998, Hurmuzlu and Marghitu 1994). Though it is possible to bypass this technical obstacle by introducing an

additional constitutive hypothesis, e.g. (Ballard 2000, H3 in Sec. 3.3), it remains to be validated (either theoretically or

experimentally) that such assumptions accurately represent the physical system’s behavior. Plastic impact avoids these

inconsistencies, but more importantly we claim plastic impact provides a more useful model of the robotic systems of

interest. Elastic impact is clearly needed in some robotics applications such as juggling (Buehler et al. 1994, Schaal

and Atkeson 1993), tapping (Huang and Mason 1998) or ping-pong (Andersson 1989), but plastic impact, where

there is no restitution and therefore no separation velocity after impact, is a more desirable model for most forms

of locomotion (when it is important to keep feet on the ground) (Chatterjee et al. 2002, Westervelt et al. 2003) and

manipulation (when it is important to keep fingers on the object) (Chatterjee et al. 2002, Wang and Mason 1987).

The new pseudo-impulse presented here, in addition to the Zeno results mentioned above, eliminates other ev-

idently unwanted transitions by allowing the continuous-time forces to play a role in the impact process which is

primarily “logical” (as opposed to energetic). This role may be best summarized by comparison to the most common

alternatives. For example, instead of introducing a variable coefficient of restitution (Quinn 2005) (which our plastic

impacts of interest already eliminate), the pseudo-impulse is not applied to the continuous (energetic) system directly

but instead used to regularize the complementarity driven hybrid switching logic. Or as a second point of comparison,

rather than introducing a fixed dead zone in impact energy (Pagilla and Yu 2001) or velocity (Brogliato et al. 2002,

Sec. 6.4), the magnitude of the effect on our model’s hybrid logic is not fixed but rather scales with the continuous time

forces. An effect similar to this pseudo-impulse condition is also introduced by time-stepping simulations (Anitescu

and Potra 1997, Stewart and Trinkle 1996), which, true to their name, always consider forces over small but finite

time-steps. Under such schemes the magnitude of this effect is not a fixed, independent, user-imposed parameter since

it must remain proportional to the duration of each time-step. Our preference for the independent, fixed choice reflects

both mathematical convenience (the clearly defined hybrid dynamical system with its formal properties) as well as our

taste in preferring to work with robotics models targeted for specific physical environments and settings.

1.3.5 The Effect of Friction Models

While this paper focuses on the impact problem, which friction greatly complicates (Keller 1986, McGeer and Palmer

1989, Trinkle et al. 1997, Wang and Mason 1987, Wang and Kumar 1994), even simulating continuous-time dynamics

of rigid bodies with friction can be difficult (formally NP-hard (Baraff 1991)) due to the possibility of “jamming”

events (Dupont and Yamajako 1994, Mason and Wang 1988), first attributed to Painlevé (1895). In this paper, follow-

ing the model from Johnson and Koditschek (2013a), strong assumptions about frictional contact avoid these issues

and enable integration of the dynamics as a differential-algebraic equation (DAE). As noted above, an alternative

method to numerically solving these problems is the time-stepping approaches pursued in, e.g., Anitescu and Potra

(1997), Stewart and Trinkle (1996), which resolve these issues by allowing for impulses at any time step. To resolve

these issues in more general extensions of the system presented here (in particular those that are not well modeled

by the frictional assumption, A12), the hybrid dynamical system could similarly be extended by allowing impulses at

times without collisions, with such jamming events considered with additional guards and reset maps. We refer the

interested reader to “Is Painlevé a real obstacle?” (Brogliato et al. 2002, Sec. 8.1) for further discussion of these issues.

2 Modeling Assumptions

The continuous Lagrangian dynamics of self-manipulation is specified in Johnson and Koditschek (2013a) using the

notation and terminology of Murray et al. (1994) and summarized in Section 2.1. We continue to work within that

framework here and briefly list the subtle differences between these two classes of systems in Section 2.2. However

the impulsive dynamics (instantaneous changes in velocity when a new contact is added) were not specified in either,

and so we introduce a plastic impact model in Section 2.5 and explore the induced complementarity conditions in

Section 2.6. In addition, we make explicit how the massless leg (Section 2.3) and frictional assumptions (Section 2.8)

made in Johnson and Koditschek (2013a) affect both the continuous time (Section 2.4) and impulsive dynamics, lead-

ing to a new formulation for the dynamics that is equivalent to the usual formulation when there are no massless links.

Finally, Section 2.7 introduces a new pseudo-impulse that eliminates certain Zeno executions and related chattering

behavior.
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a : Q→ C Base constraint function (2.1)

A : TQ→ TC Velocity constraint function (2.1)

A† : T ∗Q→ T ∗C Force constraint function (8)

Cr,r ∈ N∪{∞,ω} Cr differentiable function (2.1)

CPPRED : TQ→ 2K Solution to the PRED predicate (32)

C : TQ2 → T ∗Q Coriolis forces (12)

FA : 2K×TQ→ B Force–acceleration predicate (38)

i, j,k ∈ K Contact constraints (2.1)

I,J,K ⊆K Set of active contact constraints (2.1)

I ⊆ K Complementarity scope (33)

Id,Idq Identity matrix, of dimension |Q| (2.1)

IV : 2K×TQ→ B Impulse–velocity predicate (50)

K :=Kn ∪Kt ⊂ N Set of all contact constraints (2.1)

M : T 2Q→ T ∗Q Inertia tensor (2.3)

M
†

: T ∗Q→ T 2Q Constrained inverse inertia tensor (8)

N : Q→ T ∗Q Potential forces (e.g. gravity) (12)

NTD : TQ→ B New touchdown predicate (22)

P ∈ T ∗Q Impulse in state space (2.5)

P̂, P̃ ∈ T ∗C Impulses in constraint space (25), (56)

PIV : 2K×TQ→ B Pseudo-impulse IV predicate (58)

q ∈Q := Θ× SE(d) Continuous state (2.1)

Tq := (q, q̇) ∈ TQ Continuous state and velocity (2.1)

TD : Kn ×TQ→ B Touchdown predicate (21)

U : T ∗C →R|C| Unilateral constraint cone (2.1)

α : K→Kn Corresponding normal constraint (2)

δt ∈ R+ Small time duration of impact (56)

∆q̇ ∈ TQ Instantaneous change in velocity (2.5)

λ ∈ T ∗C Lagrange multipliers (13)

Λ : T 2C → T ∗C Constrained contact inertia tensor (8)

ϒ ∈ T ∗Q External forces and torques (12)

≺,≻,�,�,≡ Trending negative/positive (Def. 1)

Table 1: Key symbols used throughout this paper, with section or equation number of introduction marked. See also

Table 2 for symbols introduced in Section 3.

2.1 Setup and Notation

The notation used in this paper is chosen to be consistent with (Johnson and Koditschek 2013a, Table I) (and agreeing

where possible with Murray et al. (1994)) or is defined as it is used and summarized in Table 1. The base component

of the state is denoted, q ∈ Q, while the full state is, Tq := (q, q̇), and this state completely describes the motion of

interest, as,

Assumption A1 (Rigid Bodies). The robot is made up of a finite number of rigid bodies whose configuration lies in a

connected complete Cω Riemannian manifold Q.

Since the configuration spaces of many extant robots are not linear (e.g., due to rotary joints, rigid body rota-

tions, or constrained mechanisms), it is most natural to invoke the general framework of differentiable manifolds to

model the state space. For concreteness we consider the case where Q := Θ× SE(d) consists of joint angles and

the special Euclidean group of dimension d, but our formal results are stated for an arbitrary connected complete Cω

Riemannian manifold Q. We recognize that this generality necessitates mathematical formalisms and notation that

are not uniformly adopted in the robotics community (exceptions such as Murray et al. (1994) notwithstanding); we

aim whenever possible to translate unfamiliar objects into standard terminology and provide a terse overview of the

background material needed to parse the more general case in Appendix C.
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We are concerned with sets of contact constraints (e.g., I,J,K ⊂ K) that we shall call modes or contact modes

hereinafter, subsets of indices whose particular elements (e.g., i, j,k ∈ K) index the contact constraints that prevail at

some instant (Johnson and Koditschek 2013a, Sec. II.C) (Murray et al. 1994, Sec. 5.2.1). In addition to contact with

the robot’s environment, contact constraints may include cases of self-contact as well as joint limits. The universe of

all possible constraint indices from which these subsets are taken is denoted K=Kn ∪Kt , partitioned by those that are

in the normal (non-penetrating) direction and those that are in tangential (non-sliding) direction. Similarly, for any

set of constraints specified by mode I, define the subsets In := I ∩Kn and It := I ∩Kt , where clearly I = In ∪ It and

In ∩ It =∅.

Contact constraints in the normal direction6, i ∈ Kn, specify a holonomic constraint of the form {(q, q̇) ∈ TQ :

ai(q) = 0} for ai : Q → R (and whose corresponding velocity constraint Ai : TQ → R is equivalent to the Jacobian

Dai, (Johnson and Koditschek 2013a, Eqn. 11)), while those in the tangential direction, i∈Kt , specify a nonholonomic

constraint of the form {(q, q̇) ∈ TQ : Ai(q)q̇ = 0} where again Ai : TQ→ R. For a given contact mode I, the space

of constrained positions is a manifold CI of dimension |I| (i.e., the number of constraints in I).

In the interest of notational clarity, we generally express functional dependence on contact modes via subscript,

e.g., XI(q, ...) := X(I,q, ...), and when it is clear from context, we further suppress the subscript, e.g. X(q, ...). For

example, and used extensively throughout this paper, fixing an ordering on K we obtain the velocity constraints active

in mode I, AI : TQ→ TCI , as a selection of rows from the set of all velocity constraints AK, i.e.,7

AI(q) := A(I,q) = πIAK(q), (1)

where πI is the Boolean projection matrix formed by the rows of canonical unit vectors associated with the elements

in the index set I. Similarly for a single constraint i, Ai := πiAK = A{i}.

We make the following assumption on the combined maps,

Assumption A2 (Simple Constraints). All constraints are independent, that is for all contact modes I, the maps

aIn : Q→ CIn and AI : TQ→ TCI are constant rank.

We refer the reader to Appendix C for the definition of rank of a Cr map; in coordinates, this condition states that

the gradient vectors of each coordinate of the respective maps are linearly independent at every point. If this condition

failed to hold, the configuration space could possess singularities that could preclude existence and/or uniqueness of

trajectories for the mechanical system. Note that this precludes the possibility of redundant constraints, though there

are methods of resolving such redundancies, e.g. in Greenfield et al. (2005). In particular, this requirement is met if

aKn ∈Cω (Q,R|Kn|) and AK ∈Cω (TQ,R|K|) are constant rank8.

We note that there is an assignment,

α : K→Kn, α|Kn = Id, (2)

of contacts to normal contacts such that α|Kt maps tangential contacts to the corresponding normal contact (where Id

is the appropriate identity matrix). Note that for each k ∈ Kt and j = α(k), Ak is orthogonal to A j.

It is well established that the motion of mutually constrained rigid bodies can be effectively modeled using poly-

nomial maps (Wampler and Sommese 2013), hence imposing contact constraints arising from their interaction with

the piecewise polynomial representations of the environment (commonly adopted by the sensory community (Lalonde

et al. 2007)) leads to,

Assumption A3 (Analytic Constraints). All constraints are analytic functions, that is for all contact modes I, the

maps aIn : Q→ CIn and AI : TQ→ TCI are Cω .

Given an analytic vector field subject to an analytic constraint, as shown in Lemma 3 it is possible to determine

whether the constraint remains active over a nonzero time horizon by evaluating Lie derivatives at a single instant in

time. If either the vector field or constraint were merely smooth, the differential equation determined by the vector

field would, in general, need to be solved over a nonzero time horizon to determine whether the constraint remained

active.

6Note that normal direction constraints for non-adhesive contact is unilateral, although within a contact mode they can be considered bilateral

until the constraint force is violated (e.g. Lötstedt 1982, Sec. 4).
7However, note that most functions of the mode are not a simple projections, and so e.g. A

†
I , defined in (8), A

†
I 6= πI A

†
K

, but rather A
†
I is as

defined in (8), i.e. constructed with the corresponding AI .
8This stronger assumption would not be true if there were two parallel constraints that, due to geometry, could not simultaneously be active, in

which case the original requirement must be checked for all I.
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Assumption A4 (Persistent Contact). Contact with the world occurs through a finite number of active constraints

indexed by I ⊂K that apply continuous time forces. Furthermore, contact persists until the next event (e.g. touchdown

or liftoff).

This assumption is related to the Principle of Constraints, as discussed in Section 1.3.1. Its adoption partitions tra-

jectories so that at all times between instantaneous touchdown or liftoff events there persists a well-defined set of active

constraints (enabling the systematic a priori enumeration and analysis of these constraint sets and their sequences, e.g.

Johnson and Koditschek (2013b)). This contrasts with simulations generated by time-stepping algorithms, wherein

contact Stewart and Trinkle (1996) or interpenetration Anitescu and Potra (1997) are resolved only at multiples of the

timestep, and no distinction between forces and impulse are made (indeed this relaxation is what enables the efficient

and consistent simulation in such formulations).

The impact problem can be summarized as determining which constraints to add or remove from the active set.

The active set continues to constrain the system so long as the unilateral constraint cone (Johnson and Koditschek

2013a, Eqn. 7) is positive, U(λ )≥ 0, where λ ∈ T ∗C is the vector of Lagrange multipliers (constraint forces) (Johnson

and Koditschek 2013a, Eqn. 33). Included in U is both the non-attachment condition that normal direction forces are

positive as well as the friction cone that relates the magnitude of the normal and tangential components.

In the complementarity problems, the following definition simplifies statements involving higher-order derivatives

of the state that seem to arise unavoidably (as stated in (van der Schaft and Schumacher 1998, Sec. 3), (Heemels et al.

2000, Sec. 1), formalizing the concepts represented in e.g. (Featherstone 2008, Fig. 11.4), (Siciliano and Khatib 2008,

Sec. 27.2)),

Definition 1. Given a smooth function h : M → R defined over a smooth manifold M, a point x ∈ M, and a smooth

vector field F : M → T M, we say that h is trending negative with respect to the vector field F at x, denoted h(x)≺F 0,

(or h(x)≺ 0 if the context specifies F), if,

∃ m ≥ 0 : (Lm
F h)(x)< 0∧∀ ℓ < m : (Lℓ

F h)(x) = 0, (3)

where Lm
F h : M → R is the mth Lie derivative9 of h with respect to the vector field F. Similarly, we say that h is

trending positive at x, denoted h(x) ≻ 0, when −h(x) ≺ 0. We say that h is identically zero at x, denoted h(x) ≡ 0,

when ∀ ℓ ∈N : (Lℓ
F h)(x) = 0. Finally, we say that h is trending non-negative at x, denoted h(x)� 0, when h(x)≻ 0 or

h(x)≡ 0, and that h is trending non-positive at x, denoted h(x)� 0, when h(x)≺ 0 or h(x)≡ 0.

We refer the reader to Appendix C for the definition of a vector field F : M → T M; in the case where M = Rn,

the tangent bundle T M can be canonically identified with Rn to obtain a more familiar function F̃ : Rn → Rn that

determines an ordinary differential equation ˙̃x = F̃(x̃).
That is, h(x)≺ 0 if and only if the following vector,

[
h(x), (LF h)(x), (L2

F h)(x), ...
]
, (4)

is lexicographically smaller than zero (Bertsimas and Tsitsiklis 1997, Def. 3.5). As an example of when these prop-

erties are important, consider the examples in Figure 2. In each case, the initial configuration (taken as the bottom

point of the circle) is q = [x y]T = [0 0]T , and the initial velocity is q̇ = [v 0]T , v > 0. Assume that the particle has

unit mass (M = Id2), and that there are no non-contact forces (N = 0, C = 0, ϒ = 0, as defined in Section 2.4). In all

cases the particle is touching the constraint (a(q) = 0) but has no impacting or separating velocity (Aq̇ = 0), so there

is no impulse (as defined in Section 2.5). Furthermore in c) and d) there is no impacting or separating acceleration

(Aq̈+ Ȧq̇ = 0). However in a) and c) the constraint function is trending positive, a(q) ≻ 0, while in b) and d) the

constraint function is trending negative a(q)≺ 0.

Furthermore, we make use of the following properties of this trending relation,

Lemma 1. The closure of {x : h(x) ≺ 0} or {x : h(x) � 0} is {x : h(x) ≤ 0}, while the closure of {x : h(x) ≻ 0} or

{x : h(x)� 0} is {x : h(x)≥ 0}.

This is easy to see as {x : h(x)< 0} ⊂ {x : h(x)� 0} ⊂ {x : h(x)≤ 0} for any vector field.

9See e.g. (Lee 2012, Ch. 9), and note our convention that, L0
F h = h.
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(a) (b) (c) (d)

Figure 2: Four examples of a planar point particle (Q = R2) with a single constraint (K = {1}), defined as (a) a =
x2 + 4y, (b) a = −x2 + 4y, (c) a = x3 + 8y, and (d) a = −x3 + 8y. Note that if the particle velocity is directed to the

right (q̇ = [v 0]T , v > 0), as illustrated, then: the constraint function is trending positive (a(q)≻ 0) in (a) and (c); the

constraint function is trending negative (a(q)≺ 0) in (b) and (d).

Lemma 2. Given a smooth vector field, F : M → TM, a point in a smooth boundaryless manifold, x ∈ M, and a

smooth positive function, g : M → R+, any other smooth function, h : M → R, is trending negative if and only if its

product with g has the same property, i.e.,

h(x)≺F 0 ⇔ g(x) ·h(x)≺F 0. (5)

See Appendix A for a proof.

Lemma 3. Let h : M → R be a Cω function and F : M → T M be a Cω vector field over a Cω boundaryless manifold

M, and let χ : (−ε,+ε)→ M denote an integral curve for F through x := χ(0). Then h is trending positive at x with

respect to F, h(x)≻F 0, if and only if there exists δ ∈ (0,ε) such that,

∀ s ∈ (0,+δ ) : h ◦ χ(s)> 0. (6)

The requirement that the manifold be boundaryless is introduced to simplify the statement of this Lemma; the Lemma

clearly applies to the interior of a manifold with corners (which is, after all, simply a manifold without boundary)

(Joyce 2012, Def. 2.1).

To see that the lemma is true, note that if χ is an integral curve for F such that h ◦ χ(s) is positive for s > 0 suffi-

ciently small, then since h is analytic we conclude (3) is satisfied. The other direction follows easily by contradiction

using the mean value Theorem. We note that this is not true if h or F are merely C∞. Also note that the conditions of

the lemma do not imply that ∀ s ∈ (−δ ,0) : h ◦ χ(s)< 0 for two reasons: 1) it is possible that h(x) 6= 0, and 2) even

for h(x) = 0, grazing contact would handled incorrectly, as in Figure 2, example (a).

Lemma 3 implies a computationally efficient way to test these trending conditions is to simply integrate a flow

until it reaches a zero crossing, as discussed further in Section 4.4.

2.2 Manipulation and Self-Manipulation

This section briefly summarizes the self-manipulation formalism introduced in Johnson and Koditschek (2013a), as it

relates to manipulation, e.g. as presented in Murray et al. (1994). Each defines a number of frames on the robot and its

environment – the palm frame, the object frame, the contact frame, etc. In an effort to keep the problems as similar as

possible, the following conventions were adopted in Johnson and Koditschek (2013a),

• In self-manipulation, the robot is the object being manipulated and so to properly consider the forces and torques

on the object the robot’s palm frame, P, and the object frame, O, are chosen to be coincident, (Johnson and

Koditschek 2013a, Sec. II-B).

• Thus motions that, in a manipulation problem, move an object to the right really move the robot to the left, and

so the self-manipulation grasp map (a component of A) is a reflection of the manipulation grasp map, Gs :=−G,

(Johnson and Koditschek 2013a, Eqn. 15).
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• By convention the contact frame is defined at any point of contact with the z-axis pointing into the object (away

from the finger tip), (Murray et al. 1994, Sec. 5.2.1). In self-manipulation the convention of (Johnson and

Koditschek 2013a, Sec. II-C) is to keep the contact frame consistent with respect to the legs, and so the z-axis

points away from the robot and into the ground. This results in a unilateral constraint cone, U, that is negative,

(Johnson and Koditschek 2013a, Eqn. 76, 78).

• Since the palm reference frame is accelerating with respect to the world, the inertia tensor, M, (Johnson and

Koditschek 2013a, Eqn. 26), and by extension the Coriolis terms, C, (Johnson and Koditschek 2013a, Eqn. 30),

are more coupled and lack the block diagonal structure present in manipulation problems, (Murray et al. 1994,

Eqn. 6.24).

It should be no surprise that the problem formulations are structurally equivalent since the underlying kinematics

and dynamics are indifferent to the problem category. However owing to the notational differences summarized

above, through the remainder of this paper we choose to write out the problems in terms of a self-manipulation

system, with the understanding that the results contained herein apply equally well to manipulation systems once

these transformations are incorporated.

2.3 Massless Considerations

To properly define the dynamics of a partially massless system, consider a parametrized family of singular semi-

Riemannian metrics,

Mε (q) : Q× [0, ε̄]→ Rq×q, (7)

such that M0(q) := M is the (possibly) degenerate inertia tensor for the system (Johnson and Koditschek 2013a,

Eqn. 26) and may be singular, while ε assigns a small mass and inertia to any putatively massless links such that Mε(q)
is full-rank for all ε > 0 (for our present purposes, it is sufficient to use a limiting model such as Mε := M0 + εIdq

rather than some more specific physically motivated one). We invoke the general definition of Riemmanian metric here

since it provides the coordinate-invariant formulation of the familiar mass or inertia matrix associated with a collection

of rigid bodies, and refer the reader to Lee (1997) for a formal definition and Section 2.4 for additional details. The

dynamics of the system in contact mode I can be expressed (as shown below) using the inverse of the following block

matrix containing Mε , defining10 A† : T ∗Q→ T ∗C, M
†

: T ∗Q→ T 2Q, and Λ : T 2C → T ∗C as,

[
M

†
I A

†T
I

A
†
I ΛI

]
:= lim

ε−>0

([
Mε AT

I

AI 0

])−1

(8)

=

(
lim

ε−>0

[
Mε AT

I

AI 0

])−1

=

[
M0 AT

I

AI 0

]−1

. (9)

From this definition, note that the following properties hold,

A†AT = AA†T = Id, M
†
AT = AM

†
= 0, (10)

M
†
M+A†T A = Id, A†M+ΛA = 0. (11)

To ensure that the inverse of the matrix in (9) (sometimes called the “Lagrangian matrix of coefficients”, e.g.

(Papalambros and Wilde 2000, Eqn. 7.79), and sometimes used in robotics for numerical reasons, e.g. (Holmes et al.

2006, Sec. 4.3)) is well-defined, we require some modeling assumptions on the nature of the massless appendages.

Thus if the inverse exists, this ε-parametrized curve takes its image in GL(n) (the group of invertible matrices over

Rn) within which matrix inversion is a continuous operation, hence the limit commutes with the inverse operation, and

M
†
ε is a well defined smooth curve defined over all ε ∈ [0, ε̄].

To meet this requirement, massless appendages are allowed here only in a limited form,

10 Note that (Johnson and Koditschek 2013a, Eqn. 40) used the notation A∗ while in this paper we use A† to signify the slight difference in

definition used here, and to avoid confusion with the pullback of A, usually noted as A∗, but which happens to be A†T .
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Assumption A5 (Constrained Massless Limbs). For all limbs in contact with the world, any rank deficiencies of the

inertia tensor M (Johnson and Koditschek 2013a, Eqn. 26) are “corrected” by velocity constraints A sufficient to

guarantee that any remaining allowed physical movement excites some associated kinetic energy, that is, the block

matrix in (9) is invertible.

If the “rank correction” condition in this assumption were violated, then it would not be possible in general to

determine the system’s instantaneous acceleration solely from the internal, applied, and Coriolis forces; it could happen

that either no accelerations are consistent with the net forces, or an infinite set of accelerations are. This condition

admits its most physically straightforward expression via the requirement that the inertia tensor is nonsingular when

written with respect to generalized or reduced coordinates, M̃ (i.e., any local chart arising from an implicit function

solution to the constraint equation (Johnson and Koditschek 2013a, Eqn. 10)). However, for purposes of this paper,

we find it more useful to work with the Lagrange-d’Alembert formulation of the constrained dynamics, (Johnson and

Koditschek 2013a, Eqn. 33), hence, we translate that natural assumption into more formal algebraic terms governing

the relationship between the lifted (velocity) constraints, A (Johnson and Koditschek 2013a, Eqn. 11), and the overall

inertia tensor M as follows,

Lemma 4. The matrix
[

M AT

A 0

]
, (9), is invertible if and only if the inertia tensor expressed in generalized or reduced

coordinates, M̃ (Johnson and Koditschek 2013a, Eqn. 36), is invertible (Johnson and Koditschek 2013a, Sec. II.K,

Assumption A.4).

as shown in Appendix B.1. See Section 4.2 for a discussion of physical scenarios that meet this requirement.

When not constrained on the ground, any such massless links or limbs must then be removed from consideration as

mechanical degrees-of-freedom: since they are massless, when unconstrained, the associated joints can be considered

to have arbitrary configuration. Their evolution is instead treated according to the principle,

Assumption A6 (Unconstrained Massless Limbs). For all limbs not in contact with the world, any components of the

state that do not excite some kinetic energy must be removed from the usual dynamics and instead considered to evolve

in isolation according to some independent, decoupled dynamics.11

In the same vein as the remark following Assumption A5 (Constrained Massless Limbs), we observe that it is not

possible to uniquely determine accelerations of unconstrained massless limbs due to corresponding degeneracy in the

inertia tensor. Excluding such limb states from the coupled Lagrangian mechanics governing the remaining body and

limb segments enables us in the sequel to specify a differential-algebraic equation that admits unique solutions. As

the dynamics of the excluded states do not affect those of the remaining states, for the rest of this section we abuse

notation and suppress the subscript I from the state space Q, so that unless stated otherwise we are concerned with

only the “active” component QI of the decomposed state space for the mode of interest. See also Section 4.5 for a

discussion of Zeno (Def. 6) considerations with massless legs.

2.4 Continuous Dynamics

With this notation, the continuous-time dynamics of (Johnson and Koditschek 2013a, Eqn. 33) in contact mode I can

be expressed as,

q̈I := M
†

I

(
ϒI −CIq̇−NI

)
−A

†T
I ȦI q̇, (12)

λI := A
†
I

(
ϒI −CIq̇−NI

)
−ΛIȦI q̇, (13)

where ϒI is the applied forces, CI is the centripetal and Coriolis forces, and NI is the nonlinear and gravitational forces

(Johnson and Koditschek 2013a, Eqn. 30, 31).

11 That is, in contact mode I, the configuration manifold Q decomposes as a product of manifolds Q = QI × Q̃I , where QI corresponds to a

subset of the system coordinates such that the matrix in (9) is nonsingular, and Q̃I corresponds to the remaining coordinates. The dynamics for the

coordinates of Q̃I is given by some vector field F̃I . Here we have written the dynamics as a second order vector field so that the dynamics of the full

system may be written in a notationally consistent manner. This is not required; regardless of how the dynamics are defined for these coordinates,

there is no coupling of energy with the rest of the system through the inertia tensor.
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When Mε , (7), is invertible (including, possibly, even for ε = 0), it is easy to verify the equivalences (and dropping

for now the subscripted contact mode I),

M
†
= M

−1 −M
−1

AT (AM
−1

AT )−1AM
−1
, (14)

A†T = M
−1

AT (AM
−1

AT )−1, (15)

Λ =−(AM
−1

AT )−1, (16)

as shown in Appendix B, (114). Note that constructions such as these are commonly used in robotics when M is

invertible, e.g. (Khatib 1983, Eqns. 45–46) and many others (where their Λr has the opposite sign of our Λ and their J̄

corresponds to A†T , although note that the definition (15) is exact and not defined as a minimal-energy pseudo-inverse).

Lemma 5. When M0 = M is invertible, the dynamics (12) and (13) are equivalent to the more common expression (as

stated e.g. in the last equations of (Johnson and Koditschek 2013a, Appendix D), or (Murray et al. 1994, Eqn. 6.5, 6.6)),

q̈ = M
−1 (

ϒ−Cq̇−N−AT λ
)
, (17)

λ = (AM
−1

AT )−1
(

AM
−1 (

ϒ−Cq̇−N
)
+ Ȧq̇

)
. (18)

The claim follows directly from substituting (14)–(16), the explicit solution to (8) when M is invertible, into (12)–

(13), as worked out in Appendix B.2.

Whether M is invertible or not, we require,

Assumption A7 (Lagrangian Dynamics). In each contact mode I, the time evolution of the active coordinates of the

system are governed by Lagrangian dynamics, and the applied forces are such that the vector field defined by (12)

for coordinates in QI and11 F̃I for coordinates in Q̃I is forward complete, i.e. the maximal integral curve through any

initial condition is defined for all positive time.

Recall from the rigid body and unconstrained massless assumptions (A1 & A6) that the configuration space, Q,

is a manifold without boundary. Thus the major obstacle to verifying Assumption A7 lies in preventing finite-time

“escape” from the state space TQ, e.g. because the velocity grows without bound or there are “open edges” in the

configuration manifold (i.e., the manifold is not compact). If the configuration manifold were compact, then it would

suffice to impose a global bound on the magnitude of the vector field in (12). If the configuration space were instead

Euclidean, Q= Rn, then it would suffice to impose a global Lipschitz continuity condition on the vector field in (12).

We note that configuration obstacles such as joint limits or self-intersections are treated as constraints in Section 3,

and hence pose no obstacle to satisfying the above boundarylessness and completeness conditions on the configuration

space.

However, since in examples of interest the configuration space is neither compact nor a vector space (as noted

after Assumption A1), we often require a more general condition. One such condition is obtained from (Ballard 2000,

Thm. 10); since we rely on this sufficient condition elsewhere in the paper, we transcribe it explicitly into our notation

as follows. When Q is a complete connected configuration manifold and M is a nondegenerate inertia tensor (i.e.,

at every q ∈ Q the coordinate representation of M(q) is invertible, thus here precluding the possibility of massless

limbs, Assumption A5), we let dM : Q×Q→ R denote the distance metric induced by the Riemannian metric 〈·, ·〉M

associated with M (Lee 1997, Ch. 6). For any vector q̇ ∈ TqQ we define |q̇|M := 〈q̇, q̇〉1/2

M
. For any covector f ∈ T ∗

q Q
we define |f|

M
−1 :=

∣∣f#
∣∣
M

, where f# ∈ TqQ is the vector obtained by “raising an index” (in coordinates, f# = M
−1

fT )

(Lee 1997, Ch. 3).

Lemma 6. If the ambient configuration space Q is a complete connected Riemannian manifold, M is a nondegenerate

inertia tensor, and the magnitude of ϒI −NI grows at most linearly with velocity and distance from some (hence any)

point in Q, i.e. if there exists C ∈ R, q0 ∈ Q such that,

∀(q, q̇) ∈ TQ :
∣∣ϒI(q, q̇)−NI(q, q̇)

∣∣
M

−1 ≤C(1+ |q̇|M + dM(q0,q)), (19)

then the flow associated with the vector field (12) is forward complete, i.e. the maximal integral curve through any

initial condition is defined for all positive time, and hence Assumption A7 is satisfied.

Proof. This is simply an application of (Ballard 2000, Thm. 10) in the absence of unilateral constraints.
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We expect this condition to be met by any model based on a physical system, and is trivially met if there is a global

bound on the magnitude of the applied, ϒI , and potential, NI , forces (whereas, notice, the necessarily unbounded

Coriolis and centripetal forces are accounted for by the Lemma and require no further consideration).

Unfortunately this condition assumes that the inertia tensor M is nondegenerate, precluding the presence of mass-

less limbs (Assumption A5). Allowing instead for a degenerate inertia tensor but enforcing the unconstrained massless

limb assumption (A6), we now describe a set of sufficient conditions that ensure Assumption A7 holds.

Lemma 7. Suppose that in each contact mode I the active constraints are either holonomic or integrable (Murray

et al. 1994, Sec. 6.1.1), meaning that there exists a reduced configuration manifold YI (i.e., generalized coordinates)

such that every point in QI lies in the image of an embedding h : YI →QI that is invariant under (12) (Johnson and

Koditschek 2013a, Sec. G) and restricted to which the reduced inertia tensor (Johnson and Koditschek 2013a, Eqn. 36)

is nondegenerate.

If the hypotheses in Lemma 6 are satisfied for YI , its reduced inertia tensor, and its reduced dynamics (Johnson and

Koditschek 2013a, Eqn. 34), and furthermore the vector field F̃I governing unconstrained massless limbs is forward

complete and uncoupled from the massive or constrained coordinates, i.e.,

TqI = Dh(TyI), ˙̃qI = F̃I(q̃I), (20)

then Assumption A7 is satisfied.

Proof. We seek to define a forward-complete flow φI : [0,∞)×TQI → TQI consistent with the vector field in (12).

Let h : YI → QI denote the embedding associated with the reduced coordinates (Johnson and Koditschek 2013a,

Sec. G). Apply Lemma 6 to the reduced system to obtain a forward-complete flow φ̃I : [0,∞)×TYI → TYI . Then

since (Ballard 2000, Prop. 3) implies Dh maps integral curves from the reduced state space to the original, for all

t ∈ [0,∞) and Ty ∈ TYI , defining φ(t,Dh(Ty)) = Dh ◦ φ̃(t,Ty) yields the desired forward-complete flow on QI .

Lemmas 6 & 7 provide sufficient conditions guaranteeing that certain systems with either full rank inertia tensors

or only holonomic constraints satisfy Assumption A7 – in the most general case, however, this remains an assumption.

We speculate that it is possible to derive a condition analogous to (19) using concepts from singular Riemannian

geometry Hermann (1973) that ensure the existence of a forward-complete flow in the presence of nonintegrable

constraints and a singular inertia tensor.

2.5 Impulsive Dynamics

Define the touchdown predicate, TD : Kn ×TQ→ B, where B := {True,False}, as,

TD(k,Tq) := ak(q) = 0∧Ak(q)q̇ < 0, (21)

so that TD(k,Tq) is true only at those points q where contact k should be considered for addition (in a manner to be

qualified in Theorem 2 by the impulse–velocity complementarity condition, (50), defined below). Furthermore, define

the new touchdown predicate,

NTD(Tq) :=
∨

k∈Kn

TD(k,Tq), (22)

such that NTD(Tq) is true only at those states where some new constraint is impacting.

At impact into contact mode J, any incoming constraint velocity AJq̇ must be eliminated. Here, we assume a

Newtonian impact law, e.g. (Chatterjee and Ruina 1998, Eqn. 3) or (Featherstone 2008, Eqn. 11.65), that is,

Assumption A8 (Plastic Impact). Impacts are plastic (inelastic), occur instantaneously, and their effect described by

an algebraic equation (23), defined below.

In general, ∆q̇J := q̇+
J − q̇−, the instantaneous change in velocity from q̇− in contact mode I before impact to q̇+

J

in contact mode J after impact, is modeled as, ∆q̇J =−(1+ e)A†T
J AJq̇− (recall that A†T : TC → TQ maps velocities

in the contact frames to velocities of the system state). The coefficient of restitution, e, may be defined in any of the

usual ways, however throughout this paper plastic impact (e = 0) is assumed. We restrict to plastic impacts as we

believe it to be more relevant to most robotics applications, and since ambiguities arise when an elastic impact occurs
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in a system with multiple active constraints: different choices of impact model can yield distinct post-impact velocities

(see Section 1.3.4). For plastic impacts, the post-impact velocity in mode J is,

q̇+
J = (Id−A

†T
J AJ)q̇

− = M
†

JMq̇−, (23)

where the final simplification follows from (11) and matches (Westervelt et al. 2003, Eqn. 9). The body impulse in

configuration coordinates is,

PJ :=−M(q̇+
J − q̇−). (24)

The contact impulse (i.e., the impulse at the contact points that induces the desired change in velocity to agree with

the new contact mode J) is,

P̂J := A
†
JPJ = A

†
JMA

†T
J AJq̇− =−ΛJAJq̇− = A

†
JMq̇−, (25)

where recall that AJ , A†
J , M, and ΛJ are functions of the state q (which does not change during impact, i.e. q+ = q−),

and the impulses, PJ and P̂J , are also functions of the incoming velocity, q̇−. The final simplification arises from (11),

matches (Westervelt et al. 2003, Eqn. 10), and is used in Section 2.7.

Lemma 8. When M is invertible, contact impulse (25) into contact mode J is equivalent to the non-degenerate plastic

impact law,

P̂J = (AJM
−1

AT
J )

−1AJq̇−, (26)

as listed e.g. in (Chatterjee and Ruina 1998, Eqn. 3).

As with the proof of Lemma 5, the result may be seen by substituting (15) or (16), the explicit solution to (8) when

M is invertible, into (25), as worked out in Appendix B.3.

2.6 Complementarity

We now introduce the classical complementarity problems for forces and impulses at the contact points, and provide

a reformulation that allows massless limbs. We begin with a general statement of the complementarity property (as in

e.g. Cottle 1968, Ingleton 1966, Lötstedt 1982, van der Schaft and Schumacher 1998), then subsequently specialize in

Sections 2.6.1 and 2.6.2 to formulations of force–acceleration and impulse–velocity complementarity. Both versions

have the general form of seeking real vectors y and z such that,

y ≥ 0, z ≥ 0, yT z = 0, (27)

(where for a vector y, y ≥ 0 ⇔ yi ≥ 0∀ i) subject to some problem-specific constraints. While the most general

problem is uncoupled, that is y and z may be chosen arbitrarily so long as they satisfy (27), the cases we consider here

are coupled by these problem-specific constraints (Pang et al. 1996, Sec. 3). In the linear complementarity problem

(LCP), for instance, the coupling constraint has the form z :=Ay+c (e.g. Brogliato et al. 2002, Eqn. 8). The functional

relationships between y and z for the complementarity problems in this paper is in general nonlinear (as discussed in

the rest of this section). Since the relation of interest is generally problem-specific and index dependent in an essential

way, we introduce temporarily an abstract scalar relation, D instead of � or ≥ and similarly ⊲ instead of ≻ or >,

whose different instantiations are prescribed in the force–acceleration and impulse–velocity versions of the problem,

respectively. For simplicity of notation we use = as the corresponding equality relation.

Solutions to this problem produce a natural bipartition (J,JC) on some index set, I, the scope (some subset of the

universal scope K, to be discussed below), where J = { j ∈ I : z j = 0} and JC = I\J = { j ∈ I : z j ⊲ 0}. Here, the

role of y and z are played by physically determined functions of a specified (“incoming”) state, Tq− = (q−, q̇−), to

yield an “outgoing” bipartition (J,JC) of the indexing scope, I. The indexing scope is a function only of the incoming

continuous state, I : TQ→ 2K, as defined in (33).

It should now be clear that for this paper the complementarity problem is reduced to finding the unknown biparti-

tion (J,JC), also known as the mode selection problem (van der Schaft and Schumacher 1998), as opposed to finding

the values of the two complementarity vectors directly, e.g. (Cottle 1968). Namely, given an index set I, two functions

Y,Z : 2I ×TQ→ R|I| that map a subset J ∈ 2I into a Euclidian space with dimension equal to the size of the index

15



set, and a generic relation ⊲ (to be instantiated as ≻ or > in the following sections12), we require a solution to a set of

constraint equations of the form,

Yj(J,Tq−)D 0, Z j(J,Tq−) = 0, ∀ j ∈ I ∩ J, (28)

Yk(J,Tq−) = 0, Zk(J,Tq−)⊲ 0, ∀ k ∈ I\J, (29)

(where by definition, I ∩ J = J). For the complementarity problems of interest in this paper, the equality constraints

in (28)–(29) hold for all arguments (J,Tq−) ∈ 2I ×TQ by construction (enforced, e.g., by the flow (12) in the force–

acceleration version, and by the impact map (25) in the impulse–velocity version).

The complementarity problem as stated thus far is not explicitly coupled (Pang et al. 1996, Sec. 3), i.e. it places no

requirements on the relationship between Yk and Zk other than their common dependence on J and Tq−, which is why

existence and uniqueness properties are challenging to define in general. Furthermore, this necessitates the evaluation

of both Yk and Zk for constraints k that are not in J. With the possibly massless limbs in our setting, the evaluation of

Zk is not always possible as the concept of a separation velocity or acceleration is poorly defined (once such a contact

point has lifted off the ground the corresponding joints must be dropped from the state according to the unconstrained

massless limb assumption, A6). Thus the specifics of Zk in the problems considered in this paper necessitate an

alternate formulation that takes advantage of the coupling between Yk and Zk, as the inequality constraints have the

property that,

Zk(J,Tq−)⊲ 0 ⇔ Yk(J∪{k},Tq−) 6⊲0, (30)

(the importance of the (J ∪{k}) mode was first noted in (Ingleton 1966, Eqn. 1.7.3)). This suggests the combined

expression,

(k ∈ J)⇔ (Yk(J ∪{k},Tq−)D 0), ∀ k ∈ I, (31)

which is equivalent to (28) & (29),

Lemma 9. The separate relational statements of the complementarity problem, (28)–(29), are equivalent to a single

biconditional statement, (31), provided that the complementary functions Y and Z satisfy (30).

Proof. First note that for k ∈ J it is trivially true that J ∪{k} = J and so (31) simplifies to the first condition of (28).

For k /∈ J, the expression in (31) along with the substitution of (30) reduces to the second condition of (29).

Expressing (31) as a predicate PRED : 2K×TQ→ B,

PRED(J,Tq−) = (J ⊆ I)
∧

k∈I
(k ∈ J)⇔ (Yk(J∪{k},Tq−)D 0).

We denote by,

CPPRED :TQ→ 2K : Tq− 7→ J, (32)

the implicit function that solves this set of constraints for the unknown required bipartition, where PRED varies with

the particular instances as determined by the appropriate form of Yk. Note that while the codomain is 2K, the solution

is always a member of 2I .

The existence of this implicit function (32) (i.e., the existence and uniqueness of a solution, J, to the mode selection

problem) is in the most general cases an additional assumption13 (see Assumption A9 and A10, below), although the

specific complementarity problems in this section (i.e., based on the relationship of the specific functions Y and Z

used in these cases) in the absence of friction reduce down to the conventional LCP problem and so existence and

uniqueness has been proven in e.g. Cottle (1968), Ingleton (1966), Lötstedt (1982), van der Schaft and Schumacher

(1998).

The motivating literature and related work discussed in Section 1.3 generally imposes two complementarity con-

ditions on rigid body dynamics models. The force–acceleration (FA) variant of (28)–(29), presented in (35)–(36),

stipulates that there cannot be both a continuous time contact force and a separation acceleration at the same contact

12Recall that the relation may, in the case of ≻, depend on the vector field at that point.
13However note that the remainder of this paper only requires a unique choice of a solution that satisfies the predicate if multiple solutions exist.
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point, and is widely considered to arise from fundamental physical reasoning. In the present setting, FA comple-

mentarity governs exclusively the nature of liftoff events (and extended in Section 2.8 to stick/slip events) wherein

the number of active contacts (i.e., cardinality of the mode set) is reduced for reasons discussed in Section 2.6.1. In

contrast, during instantaneous impact events the contact forces have no time to perform work. Instead, the impulse–

velocity (IV) variant of (28)–(29), presented in (46)–(47), precludes a simultaneous impact-induced contact impulse

and separation velocity at the same contact point. This constraint is known not to follow inevitably from the rational

mechanics of rigid body models (Chatterjee 1999), but represents a commonly exploited algorithmic simplification

that we embrace in this inelastic model at the possible expense of consistency with elastic impact models in the limit.

In the present setting, IV complementarity governs exclusively the nature of touchdown events wherein one or more

new contacts become active (i.e., cardinality of the mode set is increased) for reasons discussed in Section 2.6.2.

2.6.1 Force–Acceleration (FA) Complementarity

For continuous time contact forces, when NTD(Tq) is false and therefore P = 0 when one or more contact constraints

violate the unilateral constraint cone14 U, some constraints lift off and must be removed from the set of active con-

straints, resulting in a transition to a new mode. Determining that next mode sets up a complementarity problem over

the existing contact mode I between the unilateral constraint cone, Uk(λ ), if the contact is kept, and the separation ac-

celeration d
dt

Akq̇ =Akq̈+ Ȧkq̇ if it is removed (recall that as an active constraint the state velocity is initially Akq̇ = 0).

The full scope of contact constraints that should be considered is the set of all contacts which are “touching”, i.e. those

whose normal direction component have zero contact distance and a non-separating velocity15,

I(Tq) :={i ∈K : aα(i)(q) = 0∧Aα(i)(q)q̇ ≤ 0} (33)

={i ∈K :
(
aα(i)(q) = 0∧Aα(i)(q)q̇ = 0

)
∨TD(α(i),Tq)}. (34)

Recall that force–acceleration complementarity only holds when NTD(Tq) is false and so the final condition applies

here. Furthermore, while the full scope is formally required and does not depend on the active mode, numerically it

suffices to check I ⊆ I – this reduced scope eliminates the numerical challenge of checking the exact equality of (33).

See Section 4.4 for a further discussion of this simplification and other numerical implementation details.

For transition into J, consider contact force (13) both in J but also in the alternative mode J∪{k} where contact k

is maintained (the reason for this alternative mode is clear in Theorem 1),

U j(λJ)� 0,A jq̈+ Ȧ jq̇ ≡ 0, ∀ j ∈ I ∩ J, (35)

Uk(λJ)≡ 0,Uk(λJ∪{k})≺ 0, ∀ k ∈ I\J, (36)

where the identically zero constraints are guaranteed to hold in consequence of the dynamics governing mode J,

namely, the invariance of the flow (A jq̈+ Ȧ jq̇ ≡ 0 ∀ j ∈ J by (12)) and the Lagrange multipliers (Uk(λJ)≡ 0 ∀ k /∈ J

by (13)). Note the importance here of the trending positive/negative conditions (Definition 1) – in general it is not

sufficient to simply check the sign of the contact force but possibly higher derivatives as well. For example, in

Figure 2, cases (c) and (d), assume the particle is sliding along the constraint from left to right. At the moment the

particle reaches the origin, the contact force is zero. However in (c) the contact force is trending negative and the

constraint should be removed, while in (d) the contact force is trending positive and it should be maintained.

Constraints (35), (36) can be simplified into a form analogous to (30), hence, by Lemma 9,

(k ∈ J)⇔ (Uk(λJ∪{k})� 0), ∀ k ∈ I, (37)

or as the predicate FA : 2K×TQ→ B,

FA(J,Tq−) = (J ⊆ I)
∧

k∈I
(k ∈ J)⇔ (Uk(λJ∪{k})� 0), (38)

for which we write the associated implicit function solution, following (32), as, CPFA(Tq−) = J.

This formulation of the force–acceleration complementarity problem is required to allow for massless limbs, for

which a separation acceleration is not well defined. However when the separating acceleration is defined,

14 Recall from Section 2.2 that U in the normal direction is −1 according to the frame conventions of (Johnson and Koditschek 2013a, Eqn. 76, 78).
15 Note that thus far only normal direction constraints have been considered, however Section 2.8 extends this to include tangential (sliding

friction) constraints and this scope is defined in this general way in order to apply there as well.
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Theorem 1. The non-penetrating acceleration condition at a contact k after liftoff into mode J, Akq̈ + Ȧkq̇ ≻ 0

(when such an acceleration is well defined), is equivalent to a trending negative contact force Uk(λK) ≺ 0 in mode

K := J ∪{k}. In other words, (35)–(36) are equivalent to the usual formulation (e.g. Brogliato et al. 2002, Eqn. 10),

U j(λJ)� 0,A jq̈+ Ȧ jq̇ ≡ 0, ∀ j ∈ I ∩ J, (39)

Uk(λJ)≡ 0,Akq̈+ Ȧkq̇ ≻ 0, ∀ k ∈ I\J. (40)

Proof. Recall from Section 2.1 that πI is the canonical projection onto the linear subspace spanned by the coordinate

axes indexed by I, and assume without loss of generality that k is the final index in K such that,

AK := πKAK =

[
AJ

Ak

]
=

[
πJAK

πkAK

]
. (41)

The constraint cone, following (Johnson and Koditschek 2013a, Eqn. 78), applied to the contact forces, (13), is (see

Appendix B for details, in particular (117) expanding A
†
K and ΛK),

Uk(λK) =−πk

(
A

†
K

(
ϒ−Cq̇−N

)
−ΛKȦK q̇

)
(42)

=− AkM
†
J

AkM
†

JAk

(
ϒ−Cq̇−N

)
− 1

AkM
†

JAT
k

[
AkA

†T
J −1

][ ȦJ

Ȧk

]
q̇ (43)

=−AkM
†

J

(
ϒ−Cq̇−N

)
−AkA

†T
J ȦJq̇+ Ȧkq̇

AkM
†
JAT

k

, (44)

while the separating acceleration for constraint k in mode J is, using (12),

Akq̈J + Ȧkq̇J = Ak

(
M

†
J

(
ϒ−Cq̇−N

)
−A

†T
J ȦJq̇

)
+ Ȧkq̇ =−(AkM

†
JAT

k )Uk(λK). (45)

Since the denominator in (44) is a positive scalar function of state (as shown in Appendix B, (118)), by Definition 1 and

Lemma 2 a trending positive separation acceleration, Akq̈+ Ȧkq̇ implies a trending negative contact force, Uk(λK),
and vice-versa, and therefore (35)–(36) are equivalent conditions to (39)–(40).

Furthermore, with or without a full rank inertia tensor, we assume the existence of a unique solution to the force–

acceleration complementarity problem,

Assumption A9 (Force–Acceleration Complementarity). The force–acceleration complementarity constraints, FA,

(38), always admit an implicit function, CPFA, over the entire state space TQ, even under the frictional properties that

follow Assumption A12. That solution correctly captures the behavior of the physical system.

While there has been a long line of literature (e.g., (van der Schaft and Schumacher 1998, Ex. 3.3)16) that proves

that this is always true for independent, plastic, frictionless contacts, no result has been found that covers the limited

frictional conditions introduced in 2.8. We impose this condition in support of the Theorems in Section 3.

2.6.2 Impulse–Velocity (IV) Complementarity

Impact at one contact location can cause another contact to break, as the contact impulse must obey the unilateral

constraint cone, U j(P̂J) ≥ 0 ∀ j ∈ J, i.e. both that the impulse in the normal direction be positive (non-adhesive) and

that the tangential impulse lie in the friction cone (Chatterjee and Ruina 1998). Any contact point that would have

violated that requirement must be dropped from the active contact mode.

In addition the post-impact velocity must not allow the removed contact point to leave with a penetrating velocity

(i.e., the impulse cannot result in a velocity “into” the surface). However in the case of massless legs a positive

separation velocity is always achievable. As an alternative requirement that is based only on impulses17, consider

16 In the language of that paper, this is a Dynamic Complementarity Problem (DCP), and note that (van der Schaft and Schumacher 1998,

Eqn. 33) asserts complementarity with the base constraint (which they call y = C(q)), but here the position and velocity are already zero, i.e.

∀ j ∈ I,a j (q) = A j(q)q̇ = 0, and so the acceleration is the first degree that must be checked.
17 Note that this formulation based only on impulses also simplifies the inclusion of the pseudo-impulse condition (58).
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the contact impulse (25), P̂J (associated with the passage from contact I to contact J), but also the contact impulse

P̂J∪{k} (associated with the passage from contact I to alternative mode J∪{k} where contact k is maintained). These

impulses, along with the post-impact velocity (23), AJq̇+, must satisfy,

U j(P̂J)≥ 0,A jq̇
+ = 0, ∀ j ∈ I ∩ J, (46)

Uk(P̂J) = 0,Uk(P̂J∪{k})< 0, ∀ k ∈ I\J, (47)

where the scope, I, is again formally the set of all touching constraints, (33). However in numerical simulation it is

sufficient to check only the active constraints as well as those touching down18, (21),

IIV := I ∪{i ∈K\I : TD(α(i),Tq)} ⊆ I. (48)

Note that the equality constraints are enforced by the impact law (25), and so, by Lemma 9, constraints (46)–(47)

reduce to,

(k ∈ J)⇔ (Uk(P̂J∪{k})≥ 0), ∀ k ∈ I. (49)

or as the predicate IV : 2K×TQ→ B,

IV(J,Tq−) = (J ⊆ I)
∧

k∈I
(k ∈ J)⇔ (Uk(P̂J∪{k})≥ 0), (50)

whose solution, following (32), is denoted, CPIV(Tq−) = J.

As with the force–acceleration complementarity problem, this formulation of the impulse–velocity complementar-

ity problem is required to allow for massless limbs, for which a separating velocity is not well defined. However when

the separating velocity is defined,

Theorem 2. The non-penetrating velocity condition at a contact k after impact into mode J, Akq̇+ > 0 (where such a

velocity is well defined), is equivalent to a negative contact impulse, Uk(P̂K) < 0, at impact into mode K := J ∪{k}.

In other words, (46)–(47) are equivalent to the usual formulation (e.g. Brogliato et al. 2002, Eqn. 9),

U j(P̂J)≥ 0,A jq̇
+ = 0, ∀ j ∈ I ∩ J, (51)

Uk(P̂J) = 0,Akq̇+ > 0, ∀ k ∈ I\J. (52)

Proof. Recall from Section 2.1 that πI is the canonical projection onto the linear subspace spanned by the coordinate

axes indexed by I, and assume without loss of generality that k is the final index in K such that AK is defined as in (41).

The constraint cone, following (Johnson and Koditschek 2013a, Eqn. 78), applied to the contact impulse, (25), is (see

Appendix B for details, in particular (117) expanding ΛK),

Uk(P̂K) = πkΛKAK q̇− =
1

AkM
†
JAT

k

[
AkA

†T
J 1

][ AJ

Ak

]
q̇− =

AkA
†T
J AJq̇−−Akq̇−

AkM
†
JAT

k

, (53)

while the separating velocity for constraint k after impact into mode J is, using (23),

Akq̇+
J = Akq̇−−AkA

†T
J AJ q̇− =−

(
AkM

†
JAT

k

)
Uk(P̂K). (54)

Since the denominator in (53) is a positive scalar function of state (as shown in Appendix B, (118)), a positive separa-

tion velocity, Akq̇+ implies a negative contact impulse, Uk(P̂K), and vice-versa, and therefore (46)–(47) are equivalent

conditions to (51)–(52).

Furthermore, with or without a full rank inertia tensor, we assume the existence of a unique solution to the impulse–

velocity complementarity problem,

18 Note that this excludes those constraints which are touching but separating, but whose post-impact velocity is penetrating. For such cases the

application of this first impact puts the state into the guard for those constraints, and thus even in this pathological case the execution continues from

the correct mode.
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Assumption A10 (Impulse–Velocity Complementarity). The impulse–velocity complementarity constraint, IV, (50)

always admit an implicit function, CPIV, over the entire state space TQ, as does the modified problem including the

pseudo-impulse, PIV, (58), introduced in Section 2.7, and under the frictional properties that follow Assumption A12.

That solution correctly captures the behavior of the physical system.

As with the FA complementarity problem, there has been a long line of literature (e.g. Lötstedt 1982, Eqn. 2.10b)

that proves that this is always true for independent, plastic, frictionless contacts, however no result has been found that

covers the pseudo-impulse introduced in Section 2.7 or the limited frictional conditions introduced in Section 2.8. We

impose this condition in support of the Theorems in Section 3.

2.7 Pseudo-Impulse

Impulses arising from impacts (both plastic and elastic) generally break existing contacts. For example an impulse

imparted to the underside of a rigid block that is being pushed down onto a level surface must cause it to leave the

surface for a small time interval no matter how weak the impulse or how strong the applied force. In truth the block is

not rigid and the impulse is temporally distributed; modeling the resulting subtle deflections would greatly complicate

the system. It appears expedient to impose a minimum threshold on impulse magnitude below which the system may

be considered quasi-static and the block remains on the ground, but above which the system is dynamic and the block

detaches from the substrate. This threshold could be specified directly in terms of a pre-defined limit on the system

velocity or impulse magnitudes, however such limits would not take into account the magnitude of the applied force

(i.e., how strongly gravity or commanded torques are holding down the rigid block). Here we want the cutoff to scale

with respect to the other problem variables (such as incoming velocity, applied forces, and the contact configuration),

and we show in Section 2.7.1 that this induces an implicit (variable) bound on velocity.

In this section we define an additional impulse during impact which qualitatively improves results and eliminates

some Zeno phenomena. The time scaling parameter of this impulse may be thought of as a tuning parameter and while

we give some physical motivation for its magnitude, the inclusion of this term is motivated primarily by improving

the qualitative behavior of the numerical simulation (e.g. by excluding chattering and Zeno phenomena) in a manner

that retains physical fidelity across a broad range of application settings and preserves mathematical consistency. See

Section 4.3 for examples of physical situations whose physical fidelity and mathematical properties both appear to be

enhanced by the introduction of such a pseudo-impulse.

Therefore we make the following new assumption about the physics of the system,

Assumption A11 (Pseudo-Impulse). The continuous time forces apply some small amount of work during the impact

process.

In the usual Newtonian impact model, these forces have no effect (as shown, e.g., in ten Dam and Willems 1997,

Prop. 4.3), however here we add an additional pesudo-impulse to support this assumption.

This assumption is not used in this paper to directly change the energy at any state, but rather is used within the

discrete switching logic to improve the quality of make-break contact decisions (which implicitly changes the resulting

kinetic energy of the system). Specifically, consider the pseudo-impulse, P̃ ∈ T ∗C, that the contacts would impart on

the system to resist the continuous time forces for some small time duration, δt ∈ R+, during impact into mode J,

Mδq̇ := lim
δt→0

∫

δt

Mq̈dt ≈ (ϒ−Cq̇−−N)δt , (55)

P̃ :=A
†
JMδq̇ = A

†
J(ϒ−Cq̇−−N)δt . (56)

This small time δt can be regarded as the finite duration of the (actually non-instantaneous) impact process (Quinn

2005). An alternative interpretation is that δt specifies the time duration after an impulsive separation of a contact

during which if that contact were to return to the active set, the qualitative behavior of the system would be improved

by never considering it as having left. This interpretation, correct to first order for single contact systems, is useful

when considering what value of δt should be used. In the simulations shown in this paper a magnitude of δt = 0.03s

has been found to give the best results, although this value is surely dependent on the material properties, the system

velocities, and the desired qualitative and quantitative behavior of the model.

This pesudo-impulse is not directly applied to the system (as in Quinn 2005), because in this model impacts

occur instantaneously and the velocity displacement δq̇ would not be uniquely determined by (56) when M is singular.
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Instead the pseudo-impulse is added to the plastic impact impulse, (25), and in that way can be considered as a modified

incoming momentum,

P̂K + P̃K =−ΛKAK q̇+A
†
KMδq̇ = A

†
K

(
Mq̇+Mδq̇

)
, (57)

This modified momentum is used as an extra guard condition during impact, U(P̂+ P̃) ≥ 0, in addition to the usual

condition, U(P̂)≥ 0, since the pseudo-impulse should not break contacts that would otherwise persist. That is, when

δt > 0 the IV complementarity problem (50) is replaced by the predicate,

PIV(J,Tq) := (CPIV(Tq)⊆ J ⊆ I)
∧

k∈I
(k ∈ J)⇔ (Uk(P̂K)≥ 0∨Uk(P̂K + P̃K)≥ 0) (58)

whose solution, following (32), is denoted, CPPIV(Tq−) = J. Note that by construction,

∀ Tq ∈ TQ : CPIV(Tq)⊆ CPPIV(Tq). (59)

The formulation of the complementarity condition based only on impulses in (46)–(47) is key to admitting this mod-

ification, as using instead (51)–(52) would require considering both the impulsive and velocity implications of this

pseudo-impulse.

The existence and uniqueness of a solution to (58) is, for the purposes of this paper, simply assumed under As-

sumption A10. In numerical studies, we did not encounter simulations that violated this property. However, we have

not derived sufficient conditions ensuring the property holds for this modified complementarity predicate.

2.7.1 Velocity Implications of the Pseudo-Impulse

The IV predicate is provided as a purely logical proposition. However, its truth value varies in physically-interpretable

ways with respect to variations in the base point at which it is evaluated. In the following, Lemma 10 shows that

CPIV returns the same answer regardless of the impact speed along any particular impacting velocity direction, and

Theorem 3 shows that CPPIV does not. See Section 4.3 for a discussion of physical implications of these results in

simple example settings.

Lemma 10. Let I ⊆K, (q, q̇) ∈ TQ be such that there exists a unique k ∈ K\I such that ak(q) = 0 and Ak(q)q̇ < 0,

i.e. the system instantaneously undergoes impact with exactly one constraint k ∈ K. Define K := I∪{k} and,

∀ s ≥ 0 : q̇s :=
(

Id− (1− s)A†T
K AK

)
q̇. (60)

If δt = 0, then J := CPIV(q, q̇)⊆K satisfies,

∀ s > 0 : J = CPIV(q, q̇s), (61)

that is the solution to the complementarity problem is the same at any impacting speed.

Proof. The impulse–velocity complementarity predicate (50) is a conjunction of propositions involving conic inequal-

ities; since furthermore the contact impulse (25) is simply scaled (this first identity can be seen using the expansions

given in Appendix B, (117), and see also (10)),

AJA†T
K AK = AJ

[
A†T

J +M
†
J ... −M

†
J ...
]

AK = (Id+ 0)AJ + 0 = AJ, (62)

P̂J(q, q̇s) =−ΛJAJ(Id− (1− s)A†T
K AK)q̇ = s(−ΛJAJ q̇) = s P̂J(q, q̇), (63)

we have,

∀ j ∈ J : U j

(
P̂J(q, q̇s)

)
= U j

(
s P̂J(q, q̇)

)
. (64)

Therefore

∀ j ∈ J : U j

(
P̂J(q, q̇s)

)
≥ 0 ⇔ U j

(
P̂J(q, q̇)

)
≥ 0; (65)

the conclusion of the Lemma follows directly.
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Figure 3: Keyframes around the impact of the second leg with the ground – note the difference in contact forces

(blue arrows) which indicate which contacts are active. Top Row: Without pseudo-impulse (δt = 0). Bottom Row:

With pseudo-impulse (δt = 0.03). The center top frame shows that the contact with the front leg is lost when the rear

leg touches down (and therefore no contact force is possible), but the center bottom frame shows both contacts are

maintained with the pseudo-impulse (and therefore both contacts can apply forces to the system). Note that there is a

slight difference in touchdown time due to similar discrepancies around the time of the first leg touchdown. See also

Figure 4.

Theorem 3. Assume the same conditions as in Lemma 10. If further there is a unique constraint i ∈ I\J such that,

Ui

(
A

†
J∪{i}(q)

(
ϒ(q, q̇0)−C(q, q̇0)−N(q, q̇0)

))
> 0, (66)

(i.e., a constraint i ∈ I is impinged upon by external forces but would be removed after impact with constraint k if

δt = 0) then for all values of the pseudo-impulse parameter δt > 0, there exists s > 0 such that with q̇s defined as

in (60) we have,

∀ s ∈ (0,s) : i ∈ CPPIV(q, q̇s), (67)

that is, the pseudo-impulse prevents the liftoff of constraint i for all sufficiently small impacting speeds.

Proof. For all s > 0 let K(s) := CPPIV(q, q̇s). Recall from (59) that CPIV(q, q̇s) ⊂ CPPIV(q, q̇s) for all s ≥ 0. Thus

although K(s) may not be constant, we are only concerned with the asymptotic inclusion of additional constraints.

Note that,

lim
s→0+

P̂K(s)(q, q̇s) = 0, (68)

and therefore for all values of the pseudo-impulse parameter δt > 0,

lim
s→0+

Uk(P̂K(s)(q, q̇s)+ P̃K(s)(q, q̇s)) = Uk(P̃K(s)(q, q̇s)). (69)

for all k ∈ K(s). By assumption, constraint i is the only constraint such that Ui(P̃)> 0 and, by (58), is to be included

in the solution. As no other constraints are added or removed, there must exist some s > 0 that ensures (67) holds.

While Theorem 3 is limited to only single constraints, the pseudo-impulse parameter can similarly prevent the

impulsive liftoff of at least some constraints when there are multiple that satisfy (66), subject to the nature of the PIV

complementarity problem.

2.7.2 Pseudo-Impulse Example

The pseudo-impulse can help to resolve certain Zeno executions, as shown in Section 3.5.2, but more importantly it

reduces “chattering”, or executions that involve many impulsive transitions that are qualitatively undesirable. As an

example from the RHex leaping simulation of Figure 1 (see also the additional examples explored in Section 4.3),

Figure 3 compares the state just before and after the rear leg touches down with and without the pseudo-impulse term.

At that instant the calculated impulse (25) is Pl = −1.47Ns (in the normal direction on the front leg). Even though

the leg motor is applying maximum torque trying to keep the leg on the ground the small negative impulse causes the

leg to separate, and then the motor torque quickly accelerates the leg back to the ground (with or without massless

legs, as recall that even massless legs are assumed to have finite acceleration, thus the leg may return quickly but not

instantly). With the pseudo-impulse this is balanced out by Pδ ,1 = 7.91Ns, and the leg does not leave the ground (as
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Figure 4: Comparison of the front leg normal direction ground reaction force for evaluations with and without the

pseudo-impulse. See also Figure 3.

would be the case on the real robot in this configuration to within modeling precision). If the induced impulse were

much larger then the desired result may be for the front leg to lift off the ground, while a much smaller impulse would

clearly not break the front leg’s contact. The δt term is in essence a tuning parameter that determines the threshold

between a quasi-static regime (where contacts are maintained) and a dynamic regime (where impulses may break

existing contacts).

Impulsively breaking contact at the wrong time is an even bigger problem when considering a full behavior and not

just analyzing an individual impact event. As Figure 4 suggests, without a pseudo-impulse this impulsive liftoff can

lead to chattering. In this case starting around t = 0.023 the front leg lifts off but the continuous time forces return the

leg to the ground after a short time. When the front leg impacts the ground, the rear leg then impulsively breaks contact,

and a cyclic oscillation begins. This behavior is not quite a Zeno-execution, as the finite acceleration of the leg in the

air results in only finitely many transitions in a finite time, however these transitions are still qualitatively undesirable.

2.8 Friction

While this paper is not focused on methods for modeling friction, including friction in some form is unavoidable

(McGeer and Palmer 1989). Here, in order to advance our targeted conclusions guaranteeing the existence and unique-

ness of a solution, we assume that,

Assumption A12 (Friction). All contact points with Coulomb friction are attached only to massless links. Contact

points without friction are assumed to never resist sliding motion, and all contact points that are sliding have no kinetic

coefficient of friction. No sliding-to-sticking transitions are considered.

The velocity constraint, A, unilateral constraint cone, U, and complementarity problems, CP, are thus taken to

include any active frictional constraints – see Section 2.1 or (Johnson and Koditschek 2013a, Assumptions C.3 and C.4)

for details.

This restrictive frictional assumption ensures that during impact (i.e., in evaluating CPIV, the impulse–velocity

complementarity problem (50)) any conflict involving the frictional constraints can be resolved by simply removing

that contact (the normal and tangential constraints) from the active set (see Section 1.3.5 for a summary of pathologies

that arise when this assumption is relaxed). As a massless link, it can always rotate out of the way fast enough (as

discussed above in Section 2.6).

In continuous time (i.e., in evaluating CPFA, the force–acceleration complementarity problem (38)) this frictional

assumption as applied to the RHex model states that the body has a low coefficient of friction and does not resist

tangential forces while the legs’ rubber feet have a high coefficient of friction and therefore typically do resist tangential

forces. However it is known that even for contacts with infinite friction, allowing a sliding mode is sometimes required

to find a consistent solution to the frictional force–acceleration complementarity problem (McGeer and Palmer 1989).

Furthermore, a strict a priori assumption about friction is certainly not a good model for every situation – consider

what happens when RHex’s legs push against each other, as with the vertical leap described in Johnson and Koditschek

(2013b) (see in particular Footnote 8 and the end of Section V.A). In order to model such a behavior the leg contact
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Figure 5: Keyframes from RHex simulation leaping vertically to a height of 37cm. Blue arrows show contact forces

while the red arrow shows body velocity. The coefficient of friction is µ = 0.8 and the relative leg timing is t2 =−0.06s.

points must be allowed to transition to sliding contact when the contact forces reach the friction cone in the tangential

direction, Uk(λ )≥ 0 (Johnson and Koditschek 2013a, Eqn. 4), as with the liftoff condition in (35)–(36). Allowing this

transition enables for example the simulation of the vertical leap shown in Figure 5 or the leap onto a ledge shown in

Figure 10, which each use a (hand tuned) value of µ = 0.8. The forward leap of Figure 1 still requires this transition,

for much the same reason as in (McGeer and Palmer 1989), but uses the relatively high values of µ = 1.8 for the front

leg and µ = 2.5 for the rear. After transition to sliding the kinetic coefficient of friction is taken as µk = 0 (as with the

frictionless body contact points) so that the jamming problems discussed in Section 1.3.5 are again avoided.

The transition from sliding to sticking is much trickier. A sliding constraint sticks when the tangential velocity

drops to zero and the resulting contact forces lie within the friction cone, i.e. contact k ∈ Kt is to be added if and only

if its corresponding normal constraint is active (α(k) ∈ I) and,

Akq̇ = 0∧Uk(λI∪{k})� 0. (70)

However this additional condition complicates the force–acceleration complementarity problem and furthermore is not

needed to model any of the leaping behaviors in Johnson and Koditschek (2013b), our motivating scenario. Therefore

for the purposes of this paper we do not consider such slip-to-stick transitions. This limitation prevents, e.g., the

modeling of a leg that slides upon contact with the ground but gains traction later using static friction.

3 Hybrid Dynamics

In this section we first define a general Cr hybrid dynamical system (Section 3.1) that is then instantiated as the main

object of study for this paper, the self-manipulation hybrid dynamical system (Section 3.2). Section 3.3 establishes

that this system is indeed a Cr hybrid dynamical system and Section 3.4 further shows its internal consistency. Finally,

Section 3.5 shows that Zeno executions of the system accumulate and that the pseudo-impulse truncates certain Zeno

executions.

3.1 Cr Hybrid Dynamical System

In the following definitions we make use of the natural (disjoint-union) topology on the hybrid state space, consisting

of a collection of manifolds with corners (Joyce 2012, Def. 2.1); see Appendix D or (Burden et al. 2015b, Sec. II) for

more details. The hybrid system notation introduced in this section is summarized in Table 2.

Definition 2. A Cr hybrid dynamical system, r ∈N∪{∞,ω}, is a tuple H := (J ,Γ ,D,F ,G,R), where the constituent

parts are defined as:

1. J := {I,J, . . . ,K} ⊂ N is the finite set of discrete modes;

2. Γ ⊂ J ×J is the set of discrete transitions, forming a directed graph structure over J ;
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D :=
∏

I∈J DI Hybrid system domain (Def. 2)

F : D→ TD,FI := F|DI
Vector field (Def. 2)

G :=
∏

(I,J) GI,J , GI,J ⊂ DI Guard set (Def. 2)

H := (J ,Γ ,D,F ,G,R) Hybrid dynamical system (Def. 2)

J ⊂ N Discrete indexing set (Def. 2)

R : G →D, RI,J :=R|GI,J Reset map (Def. 2)

T :=
∏

i Ti, Ti ⊂ R Hybrid time domain (Def. 3)

Γ ⊂ J ×J Set of discrete transitions (Def. 2)

σ(χ) ∈ J N Contact word of length N (Def. 4)

χ : T →D Execution of the system (Def. 4)

Table 2: Hybrid system and execution symbols, with definition of introduction marked. See also Table 1 for symbols

introduced in Section 2.

z φ

z

φ

D{}

G{},{1} G{},{2}
G{},{1,2}

D{1} D{2}

G{1},{1,2} G{2},{1,2}
D{1,2}

a1(q)a2(q)

R{},{1}

Figure 6: Illustration of elements from the Cr hybrid dynamical system (Definition 2) for the RHex model. Note

that this is a 5-dimensional model (dimQ = 5), so we cannot faithfully represent the domains and guards on

the printed page; instead, we illustrate a two-dimensional slice of height z and body pitch φ . From the un-

constrained mode D{} there are three possible discrete transitions corresponding to touchdown of the front leg

(G{},{1} ⊂ {(q, q̇) ∈ TQ : a1(q) = 0}), rear leg (a2(q) = 0), or simultaneous touchdown of both legs. We annotate

the reset map R{},{1} corresponding to front leg touchdown, but emphasize that there are corresponding maps defined

over all the guards GI,J . Each constrained mode also generally contains liftoff guards (e.g. G{1},{} ⊂ D{1}); these are

not illustrated.

3. D :=
∏

I∈J DI is the collection of domains, where DI is a Cr manifold with corners;

4. F : D → TD is a Cr hybrid map that restricts to a vector field FI := F|DI
for each I ∈ J ;

5. G :=
∏

(I,J)∈Γ GI,J is the collection of guards, where GI,J ⊂ DI for each (I,J) ∈ Γ ;

6. R : G →D is a continuous map called the reset that restricts as RI,J :=R|GI,J : GI,J → DJ for each (I,J) ∈ Γ .

Before we proceed, we make a few clarifying comments about this definition. While Γ is a directed graph it is not

generally a tree (i.e., (I,J) and (J, I) may both be members). When we write G :=
∏

(I,J)∈Γ GI,J where GI,J ⊂ DI for

each (I,J) ∈ Γ , we are simultaneously specifying that (i) each GI,J is an arbitrary subset of DI and (ii) G is the finite

disjoint union of these subsets. The domain D should be regarded as a Cr hybrid manifold as described in Appendix D

since each DI is a Cr manifold with corners. In contrast the guard G does not generally possess a smooth structure since

each GI,J ⊂ DI is not even required to be a topological manifold. We say that H has disjoint guards if GI,J ∩GI,L =∅
for each pair (I,J), (I,L) ∈Γ such that J 6= L. An illustration of some of the elements of a Cr hybrid dynamical system

is shown in Figure 6.

Roughly speaking, an execution of a hybrid dynamical system is set in motion from an initial condition in D by

following the continuous-time dynamics determined by the vector field F until the trajectory reaches the guard G, at

which point the reset map R is applied to obtain a new initial condition. We formalize this using the notion of a hybrid

time domain.

Definition 3. A hybrid time domain is a disjoint union of intervals T :=
∏N

i=1 Ti such that:
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1. N ∈ N∪{∞};

2. Ti ⊂ R is a closed interval for all i < N, and if N < ∞ then TN ⊂ R is also a closed interval;

3. Ti ∩Ti+1 is nonempty and consists of a single element for all i < N.

Note that an interval may be degenerate, i.e. Ti = {ti}. We define supT := sup
⋃N

i=1 Ti.

This definition is essentially equivalent to the hybrid time trajectory (Lygeros et al. 2003), the hybrid time set

(Collins 2004), and the hybrid time domain (Goebel and Teel 2006), and enables us to formalize the conceptual

description of the domain of a hybrid execution from Back et al. (1993) as being divided into contiguous epochs

separated by events where the reset map is applied at an instant referred to as an event time. Furthermore, this definition

has two appealing features. First, an execution (defined below) becomes a smooth (hybrid) map defined from a

hybrid time domain T into the continuous state space D of the hybrid system, avoiding the use of set-valued maps or

cumbersome left- or right-handed limits; see Appendix D for the definition of smoothness for hybrid maps. Second, it

treats the model of time in the same class of mathematical objects as the model for the state space, namely, a disjoint

union of smooth manifolds with corners. Note that under this definition a transition time ti ∈ Ti ∩Ti+1 appears in two

consecutive components of the time domain Ti and Ti+1, allowing the flow on each interval to include both endpoints.

Also note that this allows for two transitions (or more) to occur at the same instant in time, e.g. it is possible that

Ti = {ti} ,Ti−1 ∩ Ti ∩ Ti+1 ∩ ... = {ti}; the middle portion of the trajectory would have been excised from a left- or

right-handed definition of execution, or potentially muddled with the surrounding trajectory portions in a set-valued

definition.

Definition 4. An execution of a hybrid dynamical system H = (J ,Γ ,D,F ,G,R) is a smooth map χ : T →D over a

hybrid time domain T =
∏N

i=1 Ti satisfying:

1. ∀ i ∈N, i ≤ N: if Ti is not a degenerate interval then d
dt

χ |Ti
(t) = F(χ(t)) for all t ∈ Ti;

2. ∀ i<N: for {ti}= Ti∩Ti+1 (the event times), we have χ |Ti
(ti)∈G, R(χ |Ti

(ti)) = χ |Ti+1
(ti), and for all s∈ Ti\{ti}

we have χ |Ti
(s) 6∈ G.

The execution has an associated word denoted by σ(χ) = {Ji}N
i=1 ∈ J N that specifies the sequence of discrete modes

encountered by the execution: χ |Ti
⊂ DJi

for all i ∈ N, i ≤ N. An execution χ : T → D is maximal if it cannot be

extended to an execution over a longer hybrid time domain. We say19 that H is: deterministic if for every initial

condition x ∈ D there exists a unique maximal execution χ : T →D such that χ |T1
(0) = x; non-blocking if for every

initial condition x ∈ D and any maximal execution χ : T →D with χ |T1
(0) = x, then with T =

∏N
i=1 Ti either N = ∞

or N < ∞ and TN = [tN ,∞).

The contact word, σ(χ), also called the contact motion plan, is useful for comparing and reasoning about different

executions of the hybrid system (Xiao and Ji 2001).

3.2 The Self-Manipulation System

While the previous hybrid system specification is very general, it is useful to instantiate it for a model of a physical

system. This section defines the self-manipulation system (Johnson and Koditschek 2013a) (and by the analogy of

that paper, equivalently a manipulation system (Murray et al. 1994), as summarized in Section 2.2), where the discrete

mode, I ⊂K, corresponds to the active contact mode.

Definition 5. A self-manipulation hybrid system is a Cr hybrid dynamical system, Hs = (J ,Γ ,D,F ,G,R), defined

as follows,

3.2.1 Discrete Modes

The set of modes, all physically permissible combinations of contact constraints, is given by,

J =
{

I ∈ 2K :a−1
In
(0) 6=∅∧α(It)⊂ I

}
, (71)

19 Following Lygeros et al. (2003).
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that is there are two requirements: 1) there must exist some point, q ∈ Q, such that these normal contact constraints

are active, aIn(q) = 0, and 2) no tangential constraint is included whose corresponding normal constraint is not also

included, i.e. ∄ i ∈ It : α(i) /∈ I.

3.2.2 Edges

The set of edges is made up of any pair of modes whose union is also a mode – in other words, sets arising from the

intersection of the two base sets that satisfy respectively the two sets of normal constraints,

Γ = {(I,J) ∈ J ×J : I 6= J, I ∪ J ∈ J } . (72)

This set of edges can be further restricted based on the guards, defined below, as there are some transitions (I,J) ∈ Γ
where no points in DI satisfy the requirements of the guard, i.e. GI,J =∅. In that case we reduce the edge set further,

Γ̃ = {(I,J) ∈ Γ : GI,J 6=∅}. (73)

3.2.3 Domains

The domain associated with a contact mode I ∈ J is the subset of the ambient tangent bundle TQ that satisfies the

normal non-penetration and tangential non-sliding constraints,

DI ={(q, q̇) ∈ TQ : aIn(q) = 0,aKn(q)≥ 0,AI(q)q̇ = 0} , (74)

where recall that Q := Θ× SE(d) is the joint space combined with the position space of the body.

3.2.4 Flows

The vector field on each domain is based on the self-manipulation dynamics for q̈, as in (12) and (Johnson and

Koditschek 2013a, Eqn. 33, 72), are,

FI(q, q̇) =
[
q̇, M

†
(ϒ−Cq̇−N)−A

†T
I ȦI q̇

]
. (75)

for the coordinates in QI , and recall from Assumption A6 (unconstrained massless limbs) that the coordinates asso-

ciated with unconstrained massless limbs lie in the subspace Q̃I and evolve according to the vector field F̃ , such that

the combined vector field is complete over all of TQ. The control input τ ∈ T ∗Θ that appears in ϒ is prescribed by a

Cr function of state τ ∈ Cr(TQ,T ∗Q) (for example a fixed-voltage motor model τi = κPκG(1−κGθ̇i) (Johnson and

Koditschek 2013a, Sec. IV.C.4)).

3.2.5 Guards

We find it convenient to construct the guard set, for mode I, GI ⊂ DI , as a union of subsets indexed by its “outgoing”

edges, (I,J) ∈ Γ , using the touchdown predicate (22) and the complementarity problem predicates (58) and (38)

specified as20,

GI,J =
{

Tq ∈ DI : NTD(Tq)⇒ PIV(J,Tq), (76)

¬ NTD(Tq)⇒ FA(J,Tq)
}
. (77)

Conceptually, the component of the guard for mode I associated with edge (I,J) consists of any base states, q, at

which any new touchdown event can occur from mode I into mode J, according to the NTD predicate, (22), subject to

PIV complementarity, (58). An additional condition on the base and tangent states, Tq, is that if no new contacts are

touching down (“liftoff”), then FA complementarity holds (38).

20 Note that the requirement that (I,J) ∈ Γ and therefore J ∈ J ensures that all tangential constraints in the new contact condition must have

a matching normal constraint also (or trending so). Furthermore, as in (73), note that only some of these outgoing edges make a non-empty

contribution, GI,J, to this union.
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The outlet set in domain I, defined as GI := ∪JGI,J , is,

GI =

{
Tq ∈ DI :

(
∨

k∈Kn\I

ak(q)� 0

)
∨
(
∨

i∈I

Ui(λI)≺ 0

)}
. (78)

The outlet set is used in the proof of Theorem 7, but more importantly provides a computationally expedient method

of simulating an execution: first check if Tq ∈ GI , then determine the subsequent mode afterwards,

J =

{
CPPIV(Tq), NTD(Tq)
CPFA(Tq), ¬ NTD(Tq).

(79)

3.2.6 Reset Maps

The reset map associated with edge (I,J) ∈ Γ (taking its domain exactly on GI,J , defined above) is,

RI,J(q, q̇) = [q, q̇−∆q̇J] =
[
q, q̇−A

†T
J AJq̇

]
. (80)

Note that for takeoff events, Jn ⊆ In, the prior velocity already agrees with the new contact mode and therefore the

impact map has no effect.

3.3 The Self-Manipulation System is a Hybrid System

This section shows that,

Theorem 4. The self-manipulation system (Def. 5) is a Cω hybrid dynamical system (Def. 2).

Proof. Definition 2 has a number of requirements and so this proof is broken up into the constituent parts and show

that each component of Definition 5 is compatible with the requirements.

1. J in (71) is a finite set, the only requirement on J .

2. Γ in (72) is a subset of J ×J by construction, and Γ̃ in (73) is a subset of Γ .

3. By Assumption A2 (simple constraints), for all I ∈ J the maps aIn ∈ Cω (Q,CIn) and AI ∈ Cω(TQ,TCI) are

constant rank, and therefore each DI ⊂ TQ, as defined by these functions in (74) is a closed Cω manifold with

corners (Lee 2012, Thm. 5.12), (Joyce 2012, Def. 2.1). The Nash Embedding Theorem (Nash 1966) states that

Q can be embedded analytically in Euclidean space of sufficiently high dimension; this embedding therefore

restricts to an embedding of the submanifold DI .

4. For all (q, q̇) ∈ DI , FI(q, q̇) ∈ T(q,q̇)DI for FI given in (75) (based on (12), (Johnson and Koditschek 2013a,

Eqn. 33), which enforce the equality constraints of the definition of the domain, (74), and therefore lie within

TDI) and hence we may write FI ∈Cω (DI ,T DI).
5. GI,J in (76) is a subset of DI by construction.

6. For the reset map in (80), ImRI,J(GI,J)⊂ DJ , as the domain DJ has three requirements (74):

1) aJn(q) = 0, i.e. any normal constraints are touching the surface indicated. For pre-existing constraints, {i :

i ∈ In ∩ Jn}, this requirement is already guaranteed, i.e. q ∈ GI,J ⊂ DI ⇒ aIn = 0, and the reset map does not

alter the base coordinates q. New normal constraints in mode J, { j : j ∈ Jn\In}, satisfy this requirement by the

touchdown predicate in the guard (76) (and (21)), where TD( j,Tq) is true only when a j(q) = 0.

2) aKn(q) ≥ 0, i.e. all base constraints are non-negative. Again since the reset map does not alter the base

coordinates q, then q ∈ GI,J ⊂ DI ⇒ aKn ≥ 0.

3) AJ(q)q̇ = 0, i.e. any velocity in constrained directions is zero, but this is guaranteed by the reset map as

AJq̇+ = AJ q̇−−AJA
†T
J AJq̇− = 0. Therefore, as claimed, the image of the reset map (80) lies within DJ .

3.4 Consistency Properties

This section establishes several additional properties of the self-manipulation system that are of practical importance,

Theorems 5–9, which we shall for convenience collectively call consistency properties.

Theorem 5. The self-manipulation system (Def. 5) has disjoint guards.
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Proof. The disjointedness of the guards follows directly from the assumption of uniqueness of solution for the con-

stituent complementarity problems. Define the liftoff predicate where no contact is touching down,

LO(I,Tq) := ¬ NTD(Tq)∧
(
∨

k∈I
Uk(λI)≺ 0

)
, (81)

and so by a refinement of the complementary block of the partition defined on the right hand side of (79),

CPG(I,Tq) =





CPPIV(Tq), NTD(Tq)
CPFA(Tq), LO(I,Tq)
I, otherwise,

(82)

is equal to either the unique mode J for which Tq ∈ GI,J , or simply I if the state is not in a guard, Tq /∈ GI,J∀ (I,J) ∈
Γ .

In their most general formulation, hybrid dynamical systems can accept executions that terminate before infinite

time (continuous or discrete) has elapsed, or accept multiple distinct executions from the same initial condition. This

behavior is undesirable in practice, and inconsistent with our experience on real manipulation and self-manipulation

systems. Necessary and sufficient conditions (Lygeros et al. 2003, Lems. III.1, III.2) have been formulated that ensure

a system is deterministic and non-blocking. Since these conditions are applicable to a general class of hybrid dynamical

systems, they can be difficult to verify directly for particular classes of models. No previous authors have established

that these conditions hold for any broad class of hybrid system models for Lagrangian dynamics subject to multiple

unilateral constraints, much less with the particular structure of the self-manipulation system. The conditions in

(Johansson et al. 1999, Lem. 1 & 2) come closest, as they would apply to an instance of a self-manipulation system

exhibiting only a single constraint.

To serve the needs of the present paper, we introduce an extension of the line of reasoning in Lygeros et al. (2003)

establishing that the self-manipulation system, Definition 5, is indeed deterministic and non-blocking, Definition 4, in

the presence of an arbitrary number of unilateral constraints.

Theorem 6. The self-manipulation system is deterministic.

Proof. Assumption A7 (Lagrangian dynamics) imposes a partial flow on each component DI , hence continuous tra-

jectories are unique and nondeterminism could only be introduced through a reset. But the definition of execution,

Def. 4, implies that a discrete transition occurs at Tq ∈ DI if and only if there exists J ∈ J \{I} such that Tq ∈ GI,J .

Since the guards are disjoint by Theorem 5, there is at most one guard containing Tq. The execution continues from

RI,J(Tq) ∈ DJ .

The non-blocking property is a bit more subtle as the self-manipulation systems escape some of the structure

required to handle the more general class of systems addressed in Lygeros et al. (2003) and used there to establish

conditions for non-blocking. For self-manipulation hybrid systems the non-blocking property arises from the discrete

logic and continuous dynamics in an essential manner that we now rehearse informally in preparation for the statement

and proof of Theorem 7. The guard, GI , intersects the corresponding domain, DI , both on the boundary of the domain

(to handle impact on an erstwhile inactive constraint) as well as in the interior of the domain (to handle a sign change

on some active constraint’s contact force). An execution might be blocked by conventional finite escape, i.e., if the

continuous flow brings some initial state to the boundary of the domain at a point in the complement of the guard in

finite time. Alternatively, it might be blocked by hybrid ambiguity, i.e., if the continuous flow brings some initial state

to some point that is in the complement of the guard but still lies on the boundary of the guard, for this would violate

the semantics of execution that restricts continuous flow to closed intervals (formally, Def. 4 requires a minimum –

not merely an infinum – time of entry into a guard). In the following proof we preclude both cases by showing that the

guard contains all points reached by the continuous flow that lie in the boundary of the domain or the interior of the

domain but the boundary of the guard.

Theorem 7. The self-manipulation system is non-blocking.

Proof. Recall from part 6 of the proof of Theorem 4 that the image of the guard set under the reset map is within

the domain (and thus the discrete transition is never blocking), and from Assumption A7 (Lagrangian dynamics) that
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the flow is forward complete over TQ. Therefore we need only check that the flow only reachs the boundary of the

domain or the boundary of the guard within the domain interior at a point which is included in the guard.

Recall from (74) the definition of DI , and note that it is a subset,

DI ⊂



Tq ∈ Q :

∧

k∈Kn\I

ak(q)≥ 0



 , (83)

where furthermore, (
∧

i∈In

ai(q) = 0

)
∧
(
∧

i∈I

AI(q)q̇ = 0

)
. (84)

Note that the constraints in (84) are invariant under the flow of (12), whence under the completeness assumption

(Assumption A7) it is only possible to flow out of DI in forward time by violating one of the inequality conditions

of (83).

Recall from (78) the union of all guards, GI , and then using Lemma 1 note that the closure of the union of all

guards is,

ḠI =

{
Tq ∈ DI :

(
∨

k∈K\I

ak(q)≤ 0

)
∨
(
∨

i∈I

Ui(λI)≤ 0

)}
. (85)

Now consider an arbitrary point in the domain, Tq ∈ DI . If µ(Tq) > 0 for all µ ∈ {ak}k∈K\I ∪{Ui(λI)}i∈I then

Tq is on the interior of DI\GI and it is possible to flow for positive time while remaining in the domain DI and not

reach a guard GI . Otherwise there exists k ∈ K\I such that ak(Tq) = 0 (i.e., the state has reached the boundary of the

domain) or there exists i ∈ I such that Ui(λI(Tq)) ≤ 0 (i.e., a sign change on some active constraint’s contact force).

We now consider the two (mutually exclusive) possibilities concerning whether a contact condition or an active force

is trending negative:

1. ak(Tq)≻ 0 for all k ∈ K\I or Ui(λI)� 0 for all i ∈ I;

2. there exists k ∈K\I such that ak(Tq) � 0 or there exists i ∈ I such that Ui(λI(Tq))≺ 0.

In case 1), when there is neither a negative trending contact nor active force, then it is possible to flow for positive time

in the domain without intersecting any guard or leaving the domain (Lemma 3); this provides the unique extension to

the execution. The contrary case 2) is just the situation the hybrid system’s logic is designed to flag: i.e., Tq is in a

guard, (78), so the application of the reset map provides the unique extension to the execution.

Therefore every initial condition Tq ∈ D yields a unique execution defined over a hybrid time domain that spans

infinite time (continuous or discrete), whence the self-manipulation system is non-blocking.

The self-manipulation hybrid system may undergo multiple hybrid transitions in succession at the same time t, as

there is no “dwell time” requirement to continue after reset under the continuous dynamics for any minimum amount

of time. Therefore it is important to bound the number of such multiple transitions to ensure that the continuous

execution eventually continues over an open interval of time. Here, Theorem 8 relates the image of the reset map to

the guard sets to show that continuous execution continues after at most two successive hybrid transitions.

As a simple example, consider the self-manipulation system model consisting of a point mass in a gravitational

field that points away from a constraint surface (i.e., a ball under a ceiling). If the mass is initialized with a velocity

that causes it to impact the constraint surface, it transitions first to the constrained (ceiling) contact mode through an

impact that ensures zero relative velocity. After spending zero time in the constrained mode, and therefore at the same

continuous time, the system transitions again back to the unconstrained mode as the mass succumbs to gravity. The

execution continues in the unconstrained mode as the mass accelerates away from the ceiling. In the self-manipulation

system these are treated as separate transitions. At the expense of a small amount of additional bookkeeping in the

definition of execution, we dramatically simplify the specification of the reset map (in this example, eliminating the

need for a reset map from the unconstrained mode to the same unconstrained mode consisting of impulses from a

constraint not present in either the original or destination mode).

Theorem 8. An execution of a self-manipulation hybrid system without massless limbs may undergo no more than

two hybrid transitions at a single time t.
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Proof. The guards are partitioned into two types by the new touchdown predicate, NTD(Tq), (22), into touchdown

and liftoff (non-touchdown) components. It suffices to show simply the reset map (i) takes states that are in touchdown

guards to either non-guard states, or states in a liftoff guard, and that (ii) the reset map always takes states in the liftoff

guard to non-guard states.

To show (i), note that for all points Tq in a touchdown guard, (76), the impulse–velocity complementarity ensures

that all constraints k that are touching but are not in the outgoing contact mode J have a separating velocity, Akq̇+ > 0,

after the application of the reset map, if such a velocity is well defined (52) (as in Theorem 2). Therefore all constraints

k not in J must either not be touching (ak(Tq+) > 0) or have a separating velocity (Akq̇+ > 0), but therefore cannot

satisfy the touchdown predicate, TD(k,Tq+), (21), and so NTD(Tq+) is false and the state after the reset map is either

not in a guard or is in a liftoff guard.

To show (ii), note that for all points Tq in a liftoff guard, no contacts are touching down, i.e. ∀ k ∈ Kn,TD(k,Tq)
is false. The force–acceleration complementarity problem that defines these guards, FA(J,Tq), (38), does not depend

on the active mode, I. Furthermore, the reset map RI,J(Tq) is simply identity, and so the state remains the same after

this transition, Tq = RI,J(Tq). Therefore Tq ∈ GI,J such that NTD(Tq) is false and FA(J,Tq) is true implies that

NTD(RI,J(Tq)) is also false and that FA(J,RI,J(Tq)) is still the correct solution, and the state after the reset map is

not in any guard.

Therefore at any given time t, the system can undergo at most two transitions – first if some contact is touching

down the system undergoes an impulsive transition, and then if some contact force is trending negative it undergoes a

smooth liftoff, but no further transitions are possible at that contact mode and state.

Finally, the last consistency property considers the dynamics of the discrete modes. A general Cr hybrid system

whose domains are intersecting subsets of some ambient domain (as is true for the self-manipulation hybrid system)

need not define a unique execution for a given state from any appropriate mode, even if the hybrid system is determin-

istic and non-blocking. A given state Tq ∈Q in general is a member of more than one domain, such as the corner point

in purple from Figure 6 or, for an arbitrary point, any subset of the current constraint mode. As such, we must ensure

that the evolution of the system is not biased by ascribing the “incorrect” mode to that state, nor capable of supporting

more than one word (discrete mode sequence) over a given sequence of continuous time trajectories associated with

an execution.

Theorem 9. From an initial state Tq at time t0 and any contact mode I consistent with that state, i.e. I ∈ Jq := {I ∈
J : Tq ∈ DI}, the execution is uniquely defined (in both state and contact mode) for all t > t0 after undergoing up to

one hybrid transition.

Proof. The proof considers in turn the two mutually exclusive cases defined by the truth or falsity of the predicate

NTD(Tq), (22), and in each case the execution is uniquely defined due to the uniqueness of the corresponding com-

plementarity problem.

If NTD(Tq) is true then there is some additional constraint j that is impacting, i.e. TD( j,Tq), (21), where note

that ∀ I ∈ Jq, j /∈ I. Therefore from any consistent mode I ∈ Jq, Tq is in some guard GI,J , (76), determined by

PIV complementarity, J = CPPIV(Tq), (58). Since the reset map depends on J but not I, and J is unique by the

impulse–velocity complementarity assumption (A10), the execution continues from the unique point (J,RI,J(Tq)).
If NTD(Tq) is false, then for any I ∈ Jq the system could be in a liftoff guard. Consider the mode J = CPFA(Tq),

(38), uniquely defined for a given Tq by the force–acceleration complementarity assumption (A9). If I = J then the

state is not in a guard and therefore no reset map is applied. Otherwise Tq ∈ GI,J , (77), and the system undergoes a

hybrid transition, though recall that liftoff reset maps are the identity map. In either case the execution continues from

the unique point (J,Tq).

3.5 Zeno

An execution for a hybrid system is referred to as Zeno if it undergoes an infinite number of discrete transitions in

finite time (Lygeros et al. 2003, Def. II.3).

Definition 6. An execution χ : T → D for a hybrid dynamical system H = (J ,Γ,D,F,G,R) over a hybrid time

trajectory T =
∏N

i=1 Ti is Zeno if N = ∞ and ∑∞
i=1 |Ti|< ∞.

Zeno executions need not accumulate in a general hybrid system, that is, the limit limt→supT χ(t) may be unde-

fined (Zhang et al. 2001, Def. 6). However, Lagrangian systems subject to unilateral constraints give rise to unique
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trajectories defined for all time (Ballard 2000, Thm. 10). We show in Section 3.5.1 that the self-manipulation hybrid

dynamical system (Def. 5) models this property through the mechanism of Zeno executions accumulating on a unique

limit in the ambient space TQ, from which the hybrid execution proceeds through the next smooth component (and so

forward, continuously, through ambient time). Then in Section 4.5 we discuss extensions and connections with results

in the literature.

3.5.1 Accumulation of Zeno executions

In the following Theorem, we rely on several results originally obtained using sophisticated measure-theoretic tech-

niques (Ballard 2000). At the expense of additional notational overhead, we reproduce the necessary arguments in our

hybrid system framework using elementary mathematical machinery.

Theorem 10. Given a self-manipulation hybrid system with a complete connected configuration manifold Q, if the

inertia tensor M is non-degenerate and the forces abide by the bound in (19), then the projection of any Zeno execution

χ : T →D into the ambient state space TQ, π ◦ χ : T → TQ, accumulates on a unique limit,

(q̄, ˙̄q) := lim
t→supT

π ◦ χ(t). (86)

Proof. Let χ : T →D be a Zeno execution over the hybrid time trajectory T =
∏∞

i=1 Ti. With Ti ∩Ti+1 = {ti} for all

i ∈ N, let t = supT < ∞. For notational convenience in this proof we let Ti = [t+i−1, t
−
i ] for all i ∈ N. This notation

is somewhat redundant since t+i = t−i ∈ R for all i ∈ N; we use it to signify that t−i ∈ Ti and t+i ∈ Ti+1. Note that

limi→∞(t
−
i − t+i−1) = 0 since limi→∞ ti = t. When there should be no confusion as to the index of the time domain, we

abuse notation by suppressing the index and simply write q̇(t) instead of q̇(i, t) for t ∈ [t+i−1, t
−
i ].

Let π : D → TQ be the canonical projection that simply removes the label from the disjoint union D =
∏

I∈J DI ,

and let (q, q̇) := π ◦ χ denote the velocity and position components of the execution χ . Note that since the reset

map, (80), does not change the position, q, the position trajectory q : T →Q satisfies,

q|Ti
(ti) = q(t−i ) = q(t+i ) = q|Ti+1

(ti), (87)

for all i ∈ N, i.e. positions evolve continuously with respect to time. Therefore q uniquely determines a continuous

curve q̃ : T → Q over the half-open interval T =
⋃∞

i=1 Ti = [0, t). The restriction q̇|Ti
is continuous for every i ∈ N,

therefore it uniquely determines a right-continuous curve
(

q̃, ˙̃q
+
)

: T → TQ. The bound in (19) ensures that the

velocity is bounded on finite time horizons,

v̄ := sup
t∈T

{∣∣∣ ˙̃q+
(t)
∣∣∣
M

}
< ∞, (88)

as shown using a sequence of standard results in Appendix E.1 (and adapted from the proof of (Ballard 2000,

Thm. 10)). For any nondecreasing Cauchy sequence, {si}∞
i=1 ⊂ T such that si → t, the sequence {q̃(si)}∞

i=1 is also

Cauchy since,

∀ n,m ∈ N : dM(q̃(sn), q̃(sm))≤
∫ sn

sm

∣∣∣ ˙̃q+
(s)
∣∣∣
M

ds ≤ v̄ |sn − sm| . (89)

Therefore the position tends to a unique limit in the ambient state space, i.e. the following limit exists:

q̄ := lim
t→t

q̃(t).

Under the simple constraints assumption (A2), the Rank Theorem (Lee 2012, Thm. 4.12) ensures there exists a coor-

dinate chart (V,ψ) near q̄ where AK = [Id,0]. Continuity of q̃ ensures there exists t ∈ T for which q̃([t, t))⊂V .

Let σ(χ) = {Ji}∞
i=1 ⊂ J denote the sequence of discrete modes visited by χ and let m := min{i ∈ N : ti ≥ t}.

Specializing the definition of execution of a hybrid system to the self-manipulation system and performing integration-

by-parts as in Appendix E.2 we conclude that in coordinates,

∀ i > m, t ∈ [t+i−1, t
−
i ] :M(q(t))q̇(t)−M(q(t+i−1))q̇(t

+
i−1)

=
∫ t

ti−1

(
ϒ(q, q̇)−N(q, q̇)− C̃(q, q̇) −AJi

(q)T λJi
(q, q̇)

)
ds,

M(q(t+i ))q̇(t+i )−M(q(t−i ))q̇(t−i ) =−PJi
,

(90)
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where PJi
is defined in (24) and for each ℓ ∈ {1, . . . ,q} the ℓ-th coordinate of the covector C̃ ∈ T ∗Q is given by,

C̃ℓ(q, q̇) :=−1

2

q

∑
j,k=1

∂Mk j(q)

∂qℓ
q̇kq̇ j.

Recursively substituting using (90) and (87), for any t ∈ [tm, t) with m := max{i ∈N : t ≤ ti ≤ t}, the velocity compo-

nent of the execution (q, q̇) : T → TQ satisfies,

M(q(t))q̇(t)−M(q(tm))q̇(tm)

=

∫ t

tm

(
ϒ(q, q̇)−N(q, q̇)− C̃(q, q̇) −AJm

(q)T λJm
(q, q̇)

)
ds

+
m

∑
i=m

[∫ ti

ti−1

(
ϒ(q, q̇)−N(q, q̇)− C̃(q, q̇) −AJi

(q)T λJi
(q, q̇)

)
ds−PJi

]
.

(91)

Noting that for all time t ∈ (t+i−1, t
−
i ) on the interior of each time interval i > m that q̃(t) = q(t) and ˙̃q

+
(t) = q̇(t),

we conclude that for all t ∈ [tm, t) the right-continuous velocity ˙̃q
+

: T → TQ satisfies,

M(q̃(t)) ˙̃q
+
(t)−M(q̃(tm)) ˙̃q

+
(tm)

=

∫ t

tm

ϒ(q̃, ˙̃q
+
)−N(q̃, ˙̃q

+
)− C̃(q̃, ˙̃q

+
)ds−

∫ t

tm

AJm
(q̃)T λJm

(q̃, ˙̃q
+
)ds

−
m

∑
i=m

[∫ ti

ti−1

AJi
(q̃)T λJi

(q̃, ˙̃q
+
)ds+PJi

]
.

(92)

This equation, (92), is the transcription of (Ballard 2000, Eqn. 36) into our formalism.

Recall that in coordinates (V,ψ) we have AK = [Id,0] and that U(P) ≥ 0 ⇒ P ≤ 0, U(λ ) � 0 ⇒ λ ≤ 0. The

complementarity conditions, (37) and (49), thus ensure that each component of AT
J λJ and PJ are non-positive for

each J ∈ J .

We conclude by rearranging (92) (and suppressing dependence on q̃ and ˙̃q
+

) and invoking the bound from Ap-

pendix E.3 that there exists α,β ∈ R such that for each j ∈ {1, . . . , |K|},

0 ≤
m

∑
i=m

[∫ ti

ti−1

λ j
Ji

ds+P
j
Ji

]
+
∫ t

tm

λ j
Jm

ds =−
[
M

j
(t) ˙̃q

+
(t)−M

j
(tm) ˙̃q

+
(tm)

]
+
∫ t

tm

ϒ j −N
j − C̃ jds

≤ α +β (t − tm).

(93)

Therefore the infinite sum,
∞

∑
i=m

[∫ ti

ti−1

λ
j

Ji
ds+P

j
Ji

]
,

exists and is finite by the Monotone Sequence Theorem (Folland 2002, Thm. 1.16). Thus each coordinate of each term

in (92) tends to a unique limit as t → t, i.e. the following limit exists:

˙̄q := lim
t→t

˙̃q
+
(t).

Let Z ⊂ J denote the set of modes visited infinitely often by χ . Since the sequence σ(χ) = {Jn}∞
n=1 ⊂ J of

discrete modes visited by χ is an infinite sequence of elements taken from a finite set, Z 6= /0.

Although the previous result guarantees the continuous state of the system associated with a Zeno execution has a

well defined limit, we must further guarantee that it limits on a consistent mode as well. The following result guarantees

that this limiting state is indeed achieved in a well defined mode which is also physically meaningful in the sense of

being composed of any and all of the constraints that had been active infinitely often during the Zeno execution.
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Corollary 1. Let Z̄ =
⋃Z denote the set of all constraints visited during a Zeno exection χ : T → D. The set is a valid

mode, representing the asymptotic contact mode, and the zeno limit (q̄, ˙̄q) from (86) lies in the domain DZ̄ , i.e.,

Z̄ ∈ J , χ̄ := (q̄, ˙̄q) ∈ DZ̄.

Proof. We continue with the notational conventions from the Proof of Theorem 10. For all Z ∈ Z , let WZ =

AT
Z (AZM

−1
AT

Z )
−1AZ and note: WZ = WT

Z ≥ 0; WZM
−1

WZ = WZ ; q̇(t+i ) = Id − M
−1

WJi
)q̇(t−i ) for all i ∈ N;

and ∃ SZ such that (AZM
−1

AT
Z )

−1 = ST
Z SZ . Impacts do not increase energy since for all i ∈ N:

1

2
q̇(t−i )T Mq̇(t−i )− q̇(t+i )T Mq̇(t+i ) =

1

2
q̇(t−i )T Mq̇(t−i )− 1

2
q̇(t−i )T (Id−WJi

M
−1
)M(Id−M

−1
WJi

)q̇(t−i )

=
1

2
q̇(t−i )T (M−M+WJi

+WJi
−WJi

M
−1

WJi
)q̇(t−i )

=
1

2
q̇(t−i )T (2WJi

−WJi
)q̇(t−i ) =

1

2
q̇(t−i )T WJi

q̇(t−i )≥ 0.

Equation (88) implies impacts must extract a finite amount of energy,

∞

∑
i=1

q̇(t−i )T WJi
q̇(t−i )< ∞. (94)

and hence in particular,

lim
i→∞

q̇(t−i )T WJi
q̇(t−i ) = 0. (95)

Taking (95) together with,

q̇T WZq̇ = q̇T AT
Z (AZM

−1
AT

Z )
−1AZ q̇ = |SZAZq̇|2

M
,

implies each Zeno constraint is asymptotically satisfied:

∀ z ∈ Z̄ =
⋃

Z : lim
t→t

Azq̇(t) = 0. (96)

For all constraints j ∈ Z̄, j ∈ Z j for at least one Z j ∈ Z visited infinitely often in χ . By the definition of DZ j
,

∀ z ∈ Z̄ : lim
t→t

az(q(t)) = 0. (97)

and therefore χ̄ ∈ a−1
Z̄

6=∅. Furthermore for all constraints j ∈ Z̄ and all modes Z j ∈ Z containing j, the definition of

mode Z j, (71), requires that α( j) ∈ Z j ⊂ Z̄. Therefore Z̄ ∈ J by (71). The domain DZ̄ has three requirements, (74),

two of which we have already shown to be met by χ̄ in (96) & (97). Finally, as in (97), for all constraints k ∈ Kn, and

all modes Z ∈ Z , by definition of DZ ,

∀ k ∈Kn : lim
t→t

ak(q(t))≥ 0. (98)

Thus χ̄ = (q̄, ˙̄q) ∈ DZ̄ .

3.5.2 Effect of pseudo-impulse on Zeno executions

As suggested in Section 2.7, the inclusion of the pseudo-impulse prevents an infinite number of liftoff transitions in a

finite amount of time from constraints impinged upon by external forces.

Theorem 11. Let χ : T → D be a Zeno execution of a self-manipulation hybrid dynamical system with exactly two

contact constraints, so that the limiting set Z̄ = J . Under the hypotheses and notation of Theorems 10 & Corollary 1,

when the pseudo-impulse parameter is positive, δt > 0, we conclude that,

∀ z ∈ Z̄ : Uz

(
A

†

Z̄
(q̄)

(
ϒ(q̄, ˙̄q)−C(q̄, ˙̄q)−N(q̄, ˙̄q)

))
≤ 0, (99)

that is, the constraint forces cannot be positive for either constraint at the Zeno limit point.

Proof. We know limt→t Azq̇(t) = 0 for all z ∈ Z̄ by (96). When the liftoff velocity drops below the threshold given

implicitly by Theorem 3, the pseudo-impulse prevents liftoff from constraint i ∈ Z̄ if it violates (99) (i.e., meets the

condition (66)). Therefore, the contact force must be negative for both constraints z ∈ Z̄ that undergoes an infinite

number of liftoff transitions.
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4 Discussion

In this section we discuss the limitations in physical scope incurred by the twelve assumptions of Section 2, imple-

mentation details for numerical simulation, and some consequences of the results of this paper through additional

examples. Specifically, Section 4.1 reviews on a conceptual level the meaning and implications of the original as-

sumptions. Then Sections 4.2 & 4.3 use a number of specific physical examples to elucidate the nature and origin

of the more conservative restrictions that are helpful but, we speculate, not necessary to achieve the results of in-

terest in Section 3. Section 4.4 briefly discusses the issues involved with numerically simulating executions of a Cr

hybrid dynamical system. Finally, Section 4.5 explores the relationship of these assumptions to the Zeno results of

Section 3.5.

4.1 The Base Assumptions

Most of the assumptions listed in Section 2 are quite common in the modeling of physical systems, especially for

models focused on robotics. These limit the scope of the physical settings of interest, and while there are certainly

examples of robots that would be poorly modeled by each (many of which are explored in Section 1.3), we believe

that there remains a large class of systems that are covered by most if not all of these. Specifically, this class at its

core consists of rigid bodies (Assumption A1) under Lagrangian dynamics (A7) with analytic (A3), independent (A2)

constraints. That these constraints persist (A4) and are added through plastic impact (A8) are certainly domain specific

assumptions, but many robotic tasks involve touching an object or the environment with the goal of continuing that

contact in order to do some work.

With these assumptions in place, solving a complementarity problem (A9 & A10) is the most direct and mathe-

matically tractable way to formulate the change in contact conditions and is in step with a large literature (reviewed in

Section 1.3.3). Our insistence on unique solutions to the these problems, key to the consistency conclusions of Sec-

tion 3.4, has poorly understood consequences except for the case of independent plastic frictionless contacts for which

these assumptions are known to hold. The unique structure of the complementarity problems used here allows for the

inclusion of other assumptions (in particular massless limbs and the pseudo-impulse, A6 and A11), and Theorems 1

& 2 (along with Lemma 9) ensures that this form of the complementarity assumptions agrees with the more common

versions.

Assumption A7 is imposed both in the interest of the physical scope (Lagrangian dynamics) and mathematical con-

sistency. It arises from the same motivation as the familiar conditions that preclude finite escape in classical dynamical

systems but must nevertheless be couched in more technically involved language because of the hybrid setting. Thus

we have found it expedient to provide further analysis of what is left behind: the results of Lemmas 6 and 7 guarantee

the admissibility of most physically interesting problem instances, but bar (for reasons reflecting the need for a more

technical framework, we suspect, rather than mathematical necessity) only the case of nonholonomically constrained

massless links.

The remaining assumptions are not imposed to facilitate the definitions and consistency proofs underlying the

formal hybrid system (Section 3), but, rather, relate to the practicality of the physical models they can support. We

have found the following simplifying (and, strictly speaking, physical fidelity diminishing) assumptions critical to

not merely the mathematical tractability but also the qualitative accuracy of the models we use in the robotic settings

of interest (as exemplified by the illustrative cases explored below). Thus, the formal results of this paper have

been adapted wherever possible to allow for their consistent inclusion. In particular the massless leg assumptions,

A5 and A6, are sometimes made for mathematical tractability, but often are not analyzed carefully. Briefly, A5 is

tantamount to the assertion that the Lagrange D’Alembert formulation of constrained mechanics should admit smooth

generalized coordinates relative to which the kinetic energy is nonsingular, while Assumption A6 similarly requires

that any massless degrees of freedom not in contact be assigned some reasonable dynamics. Lemmas 4, 5, & 8 and

Theorems 1 & 2 all concern the inclusion of massless limbs with the other assumptions, and the theorems of Section 3.4

ensure that the resulting system is consistent.

Friction in various forms is a common modeling assumption, however the specific setup in Assumption A12 (which

divides contacts into either completely slipping or completely sticking but precludes sliding-to-sticking transitions)

consists of common components but in a very restricted manner. This particular combination is evidently not the best

model of friction for many systems. The existence and uniqueness of solutions to the corresponding complementarity

problems for this setup has never been demonstrated and therefore is simply assumed in this paper.
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Figure 7: Left: A point sliding along ground G approaches hill H. Right: Free body diagram showing impulses at

point of contact. Without P̃ no positive impulse from the ground P̂G is possible for any initial momentum Mq̇− and

any hill slope θ < 90◦.
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t=0.15 t=0.30

Figure 8: A rocking block (height h = 10cm, width w = 5cm, mass m = 5kg) settling on the ground. Top Row:

Without pseudo-impulse (δt = 0). Bottom Row: With pseudo-impulse (δt = 0.03). The execution is identical until the

last frame.

Finally, the practical and theoretical implications of the new pseudo-impulse model assumed in A11 have a com-

plicated interplay to whose exploration we devote Section 4.3.

4.2 Massless Limbs

One common set of circumstances that satisfy the requirements of the massless limbs assumption (A5) arises when

only the robot’s most distal link (the finger, lower leg, foot, or in the case of RHex, the entire leg) is massless and the

motion of its most distal point is completely constrained when it is on the ground. Although the rank requirement is

not limited to this setting, it represents the immediate motivation for our inquiry.

Though there are no truly massless limbs, computing the dynamics using (12)–(13) is numerically more stable

than inverting Mε in the presence of large disparities in limb segment masses (Holmes et al. 2006, Sec. 4.3). This is

evidenced by an order of magnitude improvement in the condition number (ratio of largest to smallest singular values)

for the RHex model used here (Johnson 2014, Sec. 5.1.1).

4.3 Pseudo-Impulse

As a simple example that motivates the need for the pseudo-impulse (Assumption A11), consider a point sliding on

the ground as in Figure 7, which hits a hill at some slope θ . The contact impulse from the hill P̂H causes the particle

to break contact with the ground and leave with some velocity sliding up the hill. This is true for any initial velocity,

no matter how small (Lemma 10), and any θ < 90◦. With a pseudo-impulse P̃ acting in the direction of gravity, (56),

Theorem 3 states that there are initial conditions that result in the point coming to rest with impulses from both the

ground and the hill (i.e., all impulses are positive and sum to zero in Figure 7). Note that in this case all quantities

scale linearly with mass and as such the solution is the same for any mass.
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Figure 9: Comparison of the vertical velocity of a settling block for evaluations with and without the pseudo-impulse.

The execution is identical until the impact at t = 0.27s. The pseudo-impulse implicitly bounds the vertical velocity

such that an impact at speeds lower than 6.3cm/s causes the block to come to rest, as indicated by the dotted line.

To see how the pseudo-impulse resolves Zeno executions, consider the “rocking block” example of a rectangular

rigid body in Figure 8 of width w, height h, mass mb, and inertia Ib (where if a uniform distribution is assumed

Ib = mb(w
2 + h2)/12), as studied in e.g. Housner (1963), Lygeros et al. (2003), McGeer and Palmer (1989), Yilmaz

et al. (2009). As it is falling onto the ground if a corner (labeled “l”) is touching down21 then the normal direction

impulse at that corner when the other corner (labeled “r”) hits the ground is,

Ul(P̂) =
ż(2Ib +mb(w

2 − h2)/2)

w2
, (100)

(note that by convention a positive velocity ż is one that is towards the ground) and the required impulse is negative if,

h2 > w2 +
4Ib

mb

⇒ Ul(P̂)< 0, (101)

in which case the contact is broken no matter how slow the block is moving – this is exactly what Lemma 10 predicts.

The system exhibits Zeno behavior requiring infinite transitions in finite time as each impact removes some energy but

does not immobilize the block, as shown in the upper row of Figure 9 which plots the vertical velocity as the system

undergoes a Zeno execution.

Instead if the pseudo-impulse is considered,

Ul(P̂+ P̃) =
ż(2Ib +mb(w

2 − h2)/2)

w2
+

δtmbg

2
(102)

the contact is broken if,

h2 > w2 +
4Ib

mb

+
δtgw2

ż
⇒ Ul(P̂+ P̃)< 0, (103)

where as the speed goes to zero (ż → 0) the threshold on height that allows the contact to persist grows and eventually

is met – this is exactly the case considered in Theorem 3. This truncation of the Zeno execution shown in the lower

row of Figure 9, where for the dimensions used the block comes to rest if the vertical speed at impact is less than

6.3cm/s.

Finally, note that the (somewhat restrictive) result in Theorem 11 applies exactly to this rocking block example. The

word associated with the Zeno execution of interest alternates between the left and right constraints being active, i.e.,

σ(χ) = {{l} ,{r} ,{l} ,{r} , . . .} . (104)

21 In this example the contact points are assumed to resist sliding friction, although when they are both in contact with the ground one of the

redundant tangential constraints is dropped. The phenomenon of interest occurs equally well with frictionless contact however the analysis is

simpler in the frictional case as presented here.
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Since the (gravitational) force violates (99), any value of the pseudo-impulse parameter δt > 0 prevents an infinite

number of liftoff (and hence touchdown) transitions for either constraint. We conclude in this case that inclusion

of the pseudo-impulse has the effect of truncating the Zeno execution, i.e. preventing an infinite number of discrete

transitions in finite time, as explored further in Section 4.5.

4.4 Numerical Simulation

As noted in the Introduction, this paper is focused on constructing from the rigid body dynamics assumptions of

Section 2 a hybrid dynamical systems model in Section 3 that has formally established, useful mathematical properties.

However, as is generally true of classical ODE models in engineering applications, it often lends additional insight to

approximate an execution of this hybrid system through numerical simulation. For example, simulations of this model

are used to generate Figures 1, 3, 4, 5, 8, 9, and 10. A full exploration of the issues involved in numerical simulation

lies far outside the scope of the present paper. In this section we briefly describe some of the most critical details

needed to simulate executions of our self-manipulation hybrid dynamical system.

The simulations presented in this paper were implemented in Mathematica22 using a conventional event-driven

scheme23. An execution of the self-manipulation hybrid dynamical system, Definition 4, is calculated for each interval

of the hybrid time domain, Definition 3, sequentially. The flow in that particular contact mode, FI , (75), is integrated

from the state at the initial time as an ordinary or differential-algebraic equation Ascher and Petzold (1998), as appro-

priate, using the NDSolve command with default parameters. The integration is stopped when the state reaches any

guard, GI , (78), as detected by the WhenEvent command. Separate events are used to test the new touchdown pred-

icate, NTD, (22), and liftoff predicate, LO, (81), which make up the guard (described in further detail below). When

an event is detected the integration stops and the subsequent contact mode is determined by evaluating the appropriate

complementarity problem according to (79). Using this combined guard set requires fewer conditions than testing for

each guard separately, however the resulting executions are identical. Finally the reset map, RI,J , (80), is applied and

the numerical integration continues again in the next time interval in contact mode J.

The numerical implementation of the two event predicate detections can be simplified from the full definition used

in the above proofs. Specifically, the touchdown predicate may be checked with an event ak(q) < 0, which given the

domain constraints, (74), becomes true at the moment the conditions of (21) hold. Similarly, by Lemma 3, the liftoff

predicate (which includes a trending condition, ≺) may be checked with an event Uk(λI) < 0, which becomes true

at the moment the conditions of (81) hold. Numerically determining these event times and states involves integrating

beyond the event (since the relevant quantities can be formally extended outside the domain D) and then stepping back

to approximate the zero crossing to some desired precision using a numerical root-finding algorithm24.

Once an event is detected, the complementarity problem, either CPPIV or CPFA, can be solved in many ways, see

e.g. Cottle and Dantzig (1968), Pang et al. (1996). For small systems of contacts, a simple but inefficient method is to

simply check the truth value of the predicate, either PIV, (58), or FA, (38), for all possible subsequent modes, J ⊆ I,

and choose the unique mode where the predicate is true.

The scope, I, (33), of these complementarity problems can also be simplified, as noted in Section 2.6. For liftoff

guards, in general it suffices to check simply the active constraints, I ⊆ I. Any constraints that are not in I and

therefore not algebraically guaranteed to satisfy the equality condition in (33) will, due to numerical error, only be

close. Using I instead of I will miss cases such as Figure 2 (d), wherein a constraint j that is not in the current active

mode ( j /∈ I) satisfies the scope in (33) ( j ∈ I). However these examples are not generic as any perturbation in the

state or constraint resolves this problem – they make up a set of measure zero which we do not expect can be reached

numerically. Similarly the scope for touchdown guards may be taken as the active set plus any impacting constraints,

as stated in (48).

22http://www.wolfram.com/mathematica/
23 Proposed originally in Witsenhausen (1966) and subsequently popularized by Back et al. (1993), Shampine et al. (1991), this simulation

algorithm for hybrid systems was proven to converge to orbitally stable trajectories that encounter (i) isolated transitions by Tavernini (1987) and

(ii) simultaneous transitions by Burden et al. (2015a). We refer the reader to Burden et al. (2015a) as a comprehensive reference for the definition

of orbitally stable trajectories, implementation details for the simulation algorithm, and proofs of convergence of simulations to executions.
24 Although there exist pathological cases wherein this scheme determines event times inaccurately (or fail to detect events entirely), so long as

the desired execution satisfies a mild orbital stability property this scheme is guaranteed to succeed (Burden et al. 2015a, Theorem 27).
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4.5 Zeno convergence results

It is instructive to contrast Theorems 10 and 11 and Corollary 1 with the completion results in Or and Ames (2011).

For Lagrangian systems subject to plastic impact with a single unilateral constraint, the completion of the simple

Lagrangian hybrid system in Or and Ames (2011) coincides with the self-manipulation hybrid system we develop

in Section 3.2. Specifically, the completion is a hybrid dynamical system (in the sense of Definition 2 with one

constrained and one unconstrained mode. Transition from the unconstrained to the constrained mode occurs at impact;

outward-trending forces trigger the transition back to the unconstrained mode. Our self-manipulation system can

therefore be viewed as a generalization of the completion to Lagrangian systems undergoing plastic impact with an

arbitrary number of unilateral constraints, a situation not considered in Or and Ames (2011). In connection with

the numerical simulation literature discussed in Section 1.3.1, we note that (Stewart 1998, Lem. 12) provides an

accumulation result for time-stepping algorithms that is analogous to our Corollary 1.

We further clarify the relationship between our contributions and the results in Or and Ames (2011) in the case

of purely inelastic (i.e., plastic) impact. Although the (un-completed) simple Lagrangian hybrid system allows plastic

impacts (i.e., a coefficient of restitution e = 0 in (Or and Ames 2011, Eqn. 4)), the definition of the guard in (Or and

Ames 2011, Sec. II-A-3) implies that every plastic impact is a Zeno event – every (q, q̇) ∈ TQ for which a(q) = 0

and A(q)q̇ = 0 is a fixed point of the reset map in (Or and Ames 2011, Eqn. 4). This stands in contrast to our guard

definition (76)–(77), where we have excised such points from the domains of the reset maps. In plain language, we

ensure that constraints may persist after an impact without instantaneously triggering Zeno events. As an illustration,

consider just a single impact event in the rocking block of Figure 8. In the simple Lagrangian hybrid system of Or and

Ames (2011), plastic impact at time t ∈ R results in a Zeno execution over a hybrid time trajectory T =
∏∞

i=1 {t} that

spans zero (continuous) time, thus conflicting with Theorem 8 (before, possibly, completion and continuing exection

to the Zeno execution considered in Section 4.3). In our self-manipulation hybrid system, the execution continues past

this impact as illustrated in Figure 9 (top) by transitioning to a constrained mode. We note that the behavior of our

system (and, equivalently, the completion from Or and Ames (2011)) is consistent with the analysis of the rocking

block in (Housner 1963, Sec. 2).

We also comment on the relationship between the truncation effect introduced by our pseudo-impulse and the

reliable truncation proposed in (Or and Ames 2011, Def. 6). The pseudo-impulse we proposed in Section 2.7 prevents

an infinite number of isolated liftoffs in finite time from pairs of constraints impinged upon by the external forces;

this is the content of Theorem 11. In (Or and Ames 2011, Def. 6), reliable truncation conditions were shown to yield

simulated executions that approximate a Zeno execution to specified precision; this is the content of (Or and Ames

2011, Thm. 3). Thus our contribution is a phenomenological heuristic that augments the hybrid system to prevent some

Zeno executions from arising (specifically, those Zeno executions that only involve two constraints impinged upon by

external forces). The contribution in (Or and Ames 2011, Sec. V) is a formal guarantee of simulation accuracy for

Zeno executions in the original hybrid system. We have yet to determine the “reliability” of our truncation in this sense

(though, as noted in the discussion following Theorem 11, the psuedo-impulse truncation is reliable in this sense for

the rocking block).

It is possible to relax the hypotheses in Theorem 10 in several ways that ensure the results in Section 3.5.1 still

hold. It is straightforward to allow time-dependent forcing (as in Ballard 2000, Thm. 10) so long as the applied and

potential forces obey the estimate,

∀ (q, q̇) ∈ TQ :
∣∣ϒ(t,q, q̇)−N(t,q, q̇)

∣∣
M

−1 ≤ ℓ(t)(1+ |q̇|M + dM(q0,q)),

where ℓ : R→R is nonnegative and locally integrable. Fully-actuated massless limbs can be included by constraining

their motion with respect to the body degrees-of-freedom, e.g. through the use of “mirror laws” (Buehler et al. 1994),

so long as the forces required to enforce the desired motion obeys the estimate in (4.5). Care must be taken to allow

the forcing to depend on the contact mode, since it is possible to introduce “sliding modes” wherein limbs cycle

infinitely often between constrained and unconstrained modes at a single time instant; we discuss this issue further in

Section 4.6.

Finally, as we have not yet been able to construct an example wherein a constraint that meets (99) is involved in

a Zeno execution, we speculate that the pseudo-impulse truncates a larger class of Zeno executions than handled by

Theorem 11. Such an extension would require a careful treatment of the interaction between the complementarity

conditions and the Zeno execution, resulting in either a proof that (99) can not hold for a constraint undergoing Zeno

or conditions for Zeno executions involving more than two contact constraints.
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Figure 10: Keyframes from RHex simulation leaping onto a 73cm ledge. Blue arrows show contact forces while the

red arrow shows body velocity. The coefficient of friction is µ = 0.8 and the relative leg timing is t2 = 0.06s.

4.6 Contact-dependent forcing

The developments in Sections 2 and 3 allow, in principle, for the applied forces ϒI to depend on the set of active

constraints I ∈ J . This is a desirable feature of our formalism since many extant robots sense their contact state with

the world and accordingly alter their actuator commands. This also enables the separate handling of massless limbs

that make or break contact with the ground, Assumptions A5 and A6. The hybrid system formalism provides a direct

route to incorporate this sort of feedback. Indeed, so long as one can ensure that the complementarity assumptions

hold, A9 and A10, then the self-manipulation system (Def. 5) has disjoint guards (Thm. 5) and hence is deterministic

(Thm. 6) and non-blocking (Thm. 7). Note, however, that the complementarity problems do not depend on contact

mode, and so care must be used to enable contact-dependent forcing that does not break these assumptions, otherwise

the execution may alternate between two adjacent modes.

5 Conclusion

The hybrid system model presented here provides for the consistent inclusion of many common simplifying physical

assumptions, including rigid bodies and plastic impacts, as well as some less common assumptions, such as the

pseudo-impulse. These assumptions are well understood to be only approximations to the real physics: our central

contribution is to develop sufficiently compatible refinements of previously investigated versions as to obviate their

erstwhile conflicts. Nevertheless, this refined model is still able to capture qualitatively many behaviors of interest in

robotics – not merely the familiar steady state tasks (e.g. Buehler et al. 1994, Holmes et al. 2006) but also transitional

maneuvers such as, archetypally, the leap onto a ledge shown in Figure 10 (a behavior first demonstrated in Johnson

and Koditschek (2013b)). Simulation results such as these suggest the descriptive power of our refined collection of

physical assumptions, while the consistency properties of Section 3.4 ensure that they avoid these potential conflicts.

However, as noted in the text, there remain a few cases where the formal proofs included here are limited to a still

further constrained subset of mechanical settings than admitted by these assumptions, most notably Theorems 3, 8,

10, & 11. As noted at several points throughout the text, we believe that the conclusions remain true under the broader

conditions (i.e., those listed in the assumptions themselves), but more general proofs of these properties remain an
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open research question.

Including such explicit assumptions makes it clear that certain extensions of this model satisfying these assump-

tions are trivially admissible, such as more complicated rolling contact conditions, (Murray et al. 1994, Sec. 5.2.1),

over rough (though still semi-analytic) terrain. At the same time extensions that violate these assumptions require

that some of the formal proofs be reconsidered, for example elastic impacts. One assumption that is often relaxed

is the persistence of contact, Assumption A4, which precludes the use of time-stepping formulations (e.g., presented

in Anitescu and Potra 1997, Stewart and Trinkle 1996) that have gained in popularity as a modeling and simulation

framework. The remaining assumptions do not explicitly depend on Assumption A4, and so it may be possible to

extend some of the results from Section 2 to these settings (although the massless leg conditions, Assumptions A5

& A6, and the pseudo-impulse assumption, Assumption A11, may prove challenging to maintain).

Indexing the contact mode as a subset of the possible contact constraints suggests a natural simplicial topology

(Hatcher 2002) over these contact modes, as first suggested in Johnson and Koditschek (2013b). This organization

of the hybrid system should enable the inspection of structural properties of the system as a whole. Furthermore the

various guard sets imply a refinement of the domains into disjoint sets that reach a unique next guard (or remain in that

mode forever). More broadly, we believe that this physically motivated hybrid system definition, formal consistency

now established, invites study as a mathematical object whose properties may likely yield formal insights into the

nature of these mechanical systems and promote the design of more complex robot behaviors that can exploit them.
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Appendix

A Proof of Lemma 2

Proof. First consider (h(x) ≺F 0) ⇒ (g(x)h(x) ≺F 0). Let mh be the index of the first nonzero derivative in the

definition of h(x)≺F 0, (3), and so for all ℓ < mh the ℓth Lie derivative is zero, (Lℓ
F h)(x) = 0. Therefore we also have,

(
Lℓ

F(g ·h)
)
(x) =

ℓ

∑
k=0

(
ℓ

k

)(
Lℓ−k

F g(x)
)
·
(
Lk

F h(x)
)
=

ℓ

∑
k=0

(
ℓ

k

)(
Lℓ−k

F g(x)
)
·
(
0
)
= 0, (105)

and similarly,

(Lmh
F g ·h)(x) =

mh

∑
k=0

(
mh

k

)(
Lmh−k

F g(x)
)
·
(
Lk

F h(x)
)
= g(x) ·

(
Lmh

F h(x)
)
, (106)

where since g(x)> 0, g(x) · (Lmh
F h(x))< 0 ⇔ (Lmh

F h(x))< 0. Therefore (h(x)≺F 0)⇒ (g(x)h(x)≺F 0).
Now consider (g(x)h(x)≺F 0)⇒ (h(x)≺F 0). Let mgh be the index of the first nonzero derivative in the definition

of g(x) ·h(x)≺F 0, (3). The proof proceeds by strong induction on ℓ, where 0 ≤ ℓ≤ mgh, relative to the proposition,

(
Lℓ

F g ·h
)
(x) = g(x)Lℓ

F h(x), (107)

i.e. that the ℓth Lie derivative of the product is equal to the product of positive function, g(x), with the ℓth Lie derivative

of the other factor, h(x). The base case is trivial, as for the 0th derivative,

(
L0

F g ·h
)
(x) = g(x)L0

F h(x) = g(x)h(x). (108)

If mgh = 0, then g(x) · h(x) < 0, but since g(x) > 0 we get that h(x) < 0 and therefore h(x) ≺ 0. If instead mgh > 0,

then g(x) · h(x) = 0 and therefore h(x) = 0. For the inductive step, suppose that the statement is true for all k < ℓ,
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implying that,
(
Lk

F g ·h
)
(x) = g(x)Lk

F h(x) = 0, (109)

(as recall that ℓ≤ mgh), and therefore, Lk
F h(x) = 0. Thus,

(
Lℓ

F (g ·h)
)
(x) =

ℓ

∑
k=0

(
ℓ

k

)(
Lℓ−k

F g(x)
)
·
(
Lk

F h(x)
)
= g(x) ·

(
Lℓ

F h(x)
)
, (110)

and the induction complete, we now conclude that the proposition, (107), holds for all ℓ≤ mgh.

If g(x)h(x) ≺F 0, then by (3) for all ℓ < mgh, (Lℓ
F(g · h)(x)) = 0, and so using (107) and g(x) > 0, we conclude

that Lℓ
F h(x) = 0. Similarly for ℓ = mgh, (Lmgh

F (g · h)(x)) < 0 ⇔ Lmgh

F h(x) < 0. Taken together, these are exactly the

conditions for h(x)≺F 0, (3), and so (g(x)h(x)≺F 0)⇒ (h(x)≺F 0).

B Linear Algebra

For additional notes on the Schur complement and block matrix inverse, see e.g. Cottle (1974), Lu and Shiou (2002),

or Jo et al. (2004). Consider a block matrix M defined as,

M :=

[
E F

G H

]
. (111)

If E is nonsingular, then the Schur complement of E in M is,

SE := H −GE−1F, (112)

which is sometimes written as (M|E).
If M is also nonsingular, the inverse of M is,

[
E F

G H

]−1

=

[
E−1 +E−1FS−1

E GE−1 −E−1FS−1
E

−S−1
E GE−1 S−1

E

]
. (113)

In particular when M is invertible the block matrix inverse of (8) can be written as,
[

M
†
J A

†T
J

A
†
J ΛJ

]
:=

[
M AT

J

AJ 0J×J

]−1

=

[
M

−1−M
−1

AT (AM
−1

AT )−1AM
−1

M
−1

AT (AM
−1

AT )−1

(AM
−1

AT )−1AM
−1 −(AM

−1
AT )−1

]
. (114)

Where when M is positive definite, so is (AM
−1

AT )−1, and therefore Λ is negative definite. Similarly, when M is

only positive semi-definite, Λ is negative semi-definite.

A common refinement to this inverse that comes up when considering some constraint sets J and K such that

K = J ∪{k} is25,

AK =

[
AJ

Ak

]
, (115)

[
M AT

K

AK 0K×K

]−1

=



[

M AT
J

AJ 0J×J

] [
AT

k

0J×1

]

[
Ak 01×J

]
0



−1

= (116)




[
M

†
J A

†T
J

A
†
J ΛJ

](
Id+

[
AT

k
0

]
S−1

E [Ak 0]

[
M

†
J A

†T
J

A
†
J ΛJ

])
-

[
M

†
J A

†T
J

A
†
J ΛJ

][
AT

k
0

]
S−1

E

- S−1
E [Ak 0]

[
M

†
J A

†T
J

A
†
J ΛJ

]
S−1

E


=



[

M
†
J A

†T
J

A
†
J ΛJ

]
+

[
M

†
JAT

k

A
†
JAT

k

]
S−1

E [AkM
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J AkA

†T
J
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] S−1

E




=



[M

†
J+M

†
JAT

k S−1
E AkM

†
J ] [A

†T
J +M

†
JAT

k S−1
E AkA

†T
J −M

†
JAT

k S−1
E
][

A
†
J+A

†
J AT

k S−1
E AkM

†
J

−S−1
E AkM

†
J

] [
ΛJ+A

†
J AT

k S−1
E AkA

†T
J −A

†
JAT

k S−1
E

−S−1
E AkA

†T
J S−1

E

]

=:

[
M

†
K A

†T
K

A
†
K ΛK

]
, (117)

SE := 0− [Ak 0]

[
M

†
J A

†T
J

A
†
J ΛJ

][
AT

k
0

]
=−AkM

†

JAT
k . (118)

25 Note that the Schur complement, SE , used here is with respect to the blocks used in (116) as defined explicitly in (118).
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Note that when both the matrix and the first block in (116) are invertible, SE must be non-zero as S−1
E is an element

of the inverse in (117). Since ΛK is negative semi-definite, so are its principle minors, in particular S−1
E . Therefore

AkM
†
JAT

k , as a positive semi-definite and non-zero scalar, is a positive number. This final expansion, (117), expresses

the components of A†
K ,M

†
K , and ΛK in terms of A†

J ,M
†
J , and ΛJ together with the added constraint Ak.

B.1 Proof of Lemma 4

Proof. Define some set of generalized coordinates (as in (Johnson and Koditschek 2013a, Sec. II.G)), y, such that

ẏ = Yq̇ and that the Jacobian of the corresponding implicit function is defined so that q̇ = Hẏ,

H =

[
A

Y

]−1 [
0

Id

]
, (119)

For this proof we need to show that M̃ = HT MH is invertible if and only if
[

M AT

A 0

]
is. The Rank Theorem (Lee

2012, Thm. 4.12) implies there exists a parameterization such that the constraint can be decoupled into a full rank c×c

subblock, A = [B 0c×e] , and therefore we choose a parameterization such that, Y = [0e×c Ide]. Thus,

H =

[
B 0c×e

0e×c Ide

]−1 [
0

Ide

]
=

[
B−1 0c×e

0e×c Ide

][
0

Ide

]
=

[
0

Ide

]
, (120)

M̃ = HT MH =
[

0 Ide

][ M11 M12

M21 M22

][
0

Ide

]
= M22, (121)

and so the requirement is that M̃ is invertible reduces down to simply requiring that M22 is invertible.

On the other hand we have,

[
M AT

A 0

]
=




M11 M12 BT

M21 M22 0

B 0 0


 . (122)

Since B is full rank then the invertability of this matrix again reduces to simply invertibility of M22 (e.g. Lu and Shiou

2002, Corollary 3.3), and thus the conditions are equivalent.

B.2 Proof of Lemma 5

Proof. Recall that limε→0 Mε = M and that Mε is invertible for all ε ∈ (0, ε̄), for some ε̄ > 0. For all ε ≥ 0, define

M
†
ε , A

†
ε , and Λε by replacing M with Mε in (8). Using (14)–(16) we rewrite the dynamics, (12)–(13),

λ = A†
(
ϒ−Cq̇−N

)
−ΛȦq̇ = lim

ε→0
A†

ε

(
ϒ−Cq̇−N

)
−ΛεȦq̇ (123)

= lim
ε→0

(
(AM

−1
ε AT )−1AM

−1
ε

)(
ϒ−Cq̇−N

)
+(AM

−1
ε AT )−1Ȧq̇ (124)

= lim
ε→0

(AM
−1
ε AT )−1

(
AM

−1
ε

(
ϒ−Cq̇−N

)
+ Ȧq̇

)
, (125)

q̈ = M
† (

ϒ−Cq̇−N
)
−A†T Ȧq̇ = lim

ε→0
M

†

ε

(
ϒ−Cq̇−N

)
−A†T

ε Ȧq̇ (126)

= lim
ε→0

(
M

−1
ε −M

−1
ε AT (AM

−1
ε AT )−1AM

−1
ε

)
(ϒ−Cq̇−N)−M

−1
ε AT (AM

−1
ε AT )−1Ȧq̇ (127)

= lim
ε→0

M
−1
ε

(
ϒ−Cq̇−N−AT

(
(AM

−1
ε AT )−1(AM

−1
ε (ϒ−Cq̇−N)+ Ȧq̇)

))
(128)

= lim
ε→0

M
−1
ε

(
ϒ−Cq̇−N−AT λ

)
, (129)

where (125) and (129) are identically equal to the desired formulation of (17) and (18) when M0 is non-singular.
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B.3 Proof of Lemma 8

Proof. Recall that limε→0 Mε = M and that Mε is invertible for all ε ∈ (0, ε̄), for some ε̄ > 0. For all ε ≥ 0, define M
†
ε ,

A
†
ε , and Λε by replacing M with Mε in (8). Then using equation (15) we rewrite the impulse (where all constraints A

are taken to be for the target contact mode J),

Pλ =−ΛAq̇− = lim
ε→0

−ΛεAq̇− = lim
ε→0

(AM
−1
ε AT )−1Aq̇−, (130)

which is identically equal to (26) when M0 is non-singular.

C Differential Topology

Let M be a Cr manifold with boundary where r ∈ N∪{∞,ω}. There are several natural constructions associated with

M we invoke repeatedly, so we briefly introduce them here and refer the reader to Lee (2012) for formal definitions.

At every point x ∈ M there is an associated tangent space TxM, which is a vector space with the same dimension as

M, i.e. dimTxM = dimM; if M is a submanifold in a Euclidean space of suitable dimension, TxM may be regarded as

a hypersurface in the ambient Euclidean space. Collating these tangent spaces yields the tangent bundle T M =
∏

x∈M

TxM, which is naturally a Cr manifold with boundary whose dimension is twice that of M, i.e. dimT M = 2dimM.

There is a canonical projection π : T M → M that simply “forgets” the tangent vector portion of a point (x,v) ∈ T M,

i.e. π(x,v) = x. At every point x ∈ M there is an associated cotangent space T ∗
x M, which is the dual of the vector space

TxM (i.e. every ν ∈ T ∗
x M is a linear operator v : TxM → R). Collating these cotangent spaces yields the cotangent

bundle T ∗M =
∏

x∈M T ∗
x M, which is naturally a Cr manifold with boundary whose dimension is twice that of M, i.e.

dimT ∗M = 2dimM. A Cr map F : M → T M is called a vector field if π ◦F = IdM where π : T M → M is the canonical

projection and Id : M → M is the canonical identity function. Given a C1 map f : M → N between Cr manifolds,

there is an associated pushforward map D f : T M → T N between their tangent spaces that evaluates to a linear map

D f (x) : TxM → Tf (x)N at every x ∈ M; in coordinates, D f is the familiar Jacobian derivative of f . The rank of f at

x ∈ M is defined to be the rank of the linear operator D f (x); if the rank of f does not vary over M, it is called constant

rank.

By the Whitney Embedding Theorem (Lee 2012, Thm. 6.15) (if r ∈ N∪{∞}) or the Nash Embedding Theorem

(Nash 1966) (if r = ω), M admits a Cr embedding ι : M →֒ R2n+1; thus any Cr manifold may be regarded as a

submanifold of a Euclidean space of suitably high dimension. Since F is Cr, the pushforward Dι ◦F admits a Cr

extension F̃ : M̃ → TM̃ over an open neighborhood M̃ ⊂ R2n+1 of the embedded image of M. The Fundamental

Theorem on Flows (Lee 2012, Thm. 9.12) implies there exists a maximal flow Φ̃ ∈Cr(Õ,M̃) for F̃ where Õ ⊂ R× M̃

is the maximal flow domain. We may restrict Φ̃ to obtain a flow over M as follows. For each x ∈ M, let,

ax = inf
{

t ≤ 0 | (t, ι(x)) ∈ Õ∧∀ s ∈ (t,0] : Φ̃(s, ι(x)) ∈ ι(M)
}
,

bx = sup
{

t ≥ 0 | (t, ι(x)) ∈ Õ∧∀ s ∈ [0, t) : Φ̃(s, ι(x)) ∈ ι(M)
}
.

Let Tx ⊂ R be the interval between ax and bx, including the endpoint if the corresponding infimum or supremum

is achieved. Then let O =
⋃

x∈M Tx ×{x} ⊂ R×M and, noting that Φ̃(t, ι(x)) ∈ ι(M) if (t,x) ∈ O, define the flow

Φ : O → M by Φ(t,x) = ι−1(Φ̃(t, ι(x))). Note that Φ is Cr in the sense that ι ◦Φ admits a Cr extension, Φ̃.

For any G ⊂ ∂M, let,

H = {x ∈ M | ∃ t ≥ 0 : (t,x) ∈ O∧Φ(t,x) ∈ G} .
Define η : H → R by,

∀ x ∈ H : η(x) = inf{t ≥ 0 | (t,x) ∈ O∧Φ(t,x) ∈ G} ,

and ψ : H → G by ψ(x) = Φ(η(x),x) for all x ∈ H. Letting H̃ =
{

x ∈ H : F(ψ(x)) 6∈ Tψ(x)∂M
}

, it is clear that η |
H̃
∈

Cr(H̃,R). Note that η is not differentiable at any point x ∈ H for which F(ψ(x)) ∈ Tψ(x)∂M; changing coordinates to

a flowbox makes this obvious. Intuitively, the impact time has unbounded sensitivity to initial conditions near such a

point of tangency.
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D Hybrid Differential Topology

In mechanical systems undergoing intermittent contact with the environment (i.e., terrain or objects), the dynamics

are “piecewise-defined” (or hybrid): whenever a limb attaches or detaches from the substrate there is an instanta-

neous change in the set of active constraints, leading in general to a discontinuous change in velocity and (constraint)

force. Though it is possible to analyze these discontinuous dynamics in the ambient tangent bundle as in Ballard

(2000), introducing a distinct portion of state space associated with every contact mode renders both the continuous-

time dynamics (given by the flow of a vector field) and discrete-time dynamics (specified by a reset map) smooth.

Thus although additional notational overhead is required to index the constituent dynamical elements, the extra ef-

fort is partially compensated by enabling the use of elementary constructions from differential topology (rather than

sophisticated measure-theoretic techniques used in Ballard (2000)).

Motivated largely by these observations, Burden et al. (2015b) proposed to define hybrid dynamical systems over

a finite disjoint union,

M =
∏

J∈J MJ =
⋃

J∈J
{J}×MJ = {(J,x) : J ∈ J ,x ∈ MJ} ,

where MJ is a finite dimensional Cr manifold (possibly with corners) for each J ∈J . By endowing M with the unique

largest topology with respect to which the (canonical) inclusions MJ →֒ M are continuous (Lee 2012, Prop. A.25),

the set M becomes a second-countable, Hausdorff topological space which is locally Euclidean in the sense that each

point x ∈ M has a neighborhood that is homeomorphic to an open subset of Rnx , some nx ∈ N. Since the dimension

is no longer required to be fixed, M is technically not a topological manifold (Lee 2012, Chapter 1). However, it is a

mild generalization26, hence we refer to it as a hybrid topological manifold.

Motivated by the self-manipulation system from Section 3, we extend the definition in Burden et al. (2015b) to

allow the component manifolds MJ to possess corners. Unfortunately there is not presently a consensus on what ought

to be the definition of a manifold with corners (Joyce 2012, Remark 2.11). Fortunately, for our purposes the most

straightforward definition in (Lee 2012, Ch. 16) suffices. This variant, for instance, ensures smooth extensibility of

maps between manifolds with corners; see the bottom paragraph of (Lee 2012, p. 27). (Note that the discussion of

manifolds with boundary in (Hirsch 1976, Sec. 1.4) (termed ∂ -manifolds) does not address this, though (Hirsch 1976,

Lem. 3.1 in Sec. 2.3) should make it unsurprising.) This coincides with (Joyce 2012, Def. 1, 2).

For each J ∈ J , MJ has an associated maximal Cr atlas AJ . We construct a maximal Cr hybrid atlas for M by

collecting charts from the atlases on the components of M:

A= {({J}×U,ϕ ◦πJ) : J ∈ J ,(U,ϕ) ∈AJ} ,
where πJ : {J}×MJ → MJ is the canonical projection. We refer to the pair (M,A) as a Cr hybrid manifold, but may

suppress the atlas when it is clear from context. We define the hybrid tangent bundle as the disjoint union of the

component tangent bundles,

T M =
∏

J∈J T MJ,

and the hybrid boundary as the disjoint union of the boundaries,

∂M =
∏

J∈J ∂MJ .

Let M =
∏

J∈J MJ and N =
∏

L∈L NL be two hybrid manifolds. Note that if a map R : M → N is continuous as a

map between topological spaces, then for each J ∈ J there exists L ∈ L such that R(MJ)⊂ NL and hence R|MJ
: MJ →

NL. Using this observation, we define differentiability for continuous maps between hybrid manifolds. Namely, a map

R : M → N is called Cr if R is continuous and R|MJ
: MJ → N is Cr for each J ∈J . In this case the hybrid pushforward

DR : TM → TN is the Cr map defined piecewise as DR|T MJ
= D(R|MJ

) for each J ∈ J . A Cr map F : M → T M is

called a hybrid vector field if π ◦F = IdM where π : T M → M is the canonical projection and Id : M → M is the

canonical identity function.

E Proofs supporting Theorem 10

E.1 Proof that velocity is bounded

The following are standard results used in the proof of Theorem 10 to prove that velocity is bounded. For convenience,

we transcribe and apply to our setting these statements from Ballard (2000), which applies them to achieve a similar

aim, however this is not to imply that Ballard (2000) is necessarily the original source of these results.

26 Since, crucially, each of the distinct finite components MJ is a conventional smooth Cr manifold (of necessarily fixed dimension).
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Lemma 11 (Ballard 2000, Prop. 7). If (q̃, ˙̃q
+
) : [t, t)→ TQ is a right-continuous trajectory of a Lagrangian system

subject to perfect unilateral constraints with efforts map f := ϒ−N, then for all t ∈ [t, t):

1

2

∣∣∣ ˙̃q+
(t)
∣∣∣
2

M
− 1

2

∣∣∣ ˙̃q+
(t)
∣∣∣
2

M
≤
∫ t

t
f(q̃(s), ˙̃q

+
(s)) ˙̃q

+
(s)ds.

Lemma 12 (Ballard 2000, Lem. 17). Let a : [t, t] → R be integrable and nonnegative for almost all t ∈ (t, t). If

φ : [t, t]→ R has bounded variation and,

∀ t ∈ [t, t] :
1

2
φ2(t)≤ 1

2
α2 +

∫ t

t
a(s)φ(s)ds,

for some α ≥ 0 then,

∀ t ∈ [t, t] : |φ(t)| ≤ α +

∫ t

t
a(s)ds.

Lemma 13 (Ballard 2000, Lem. 15; Sastry 1999, Prop. 3.21). Let a1 : [t, t] → R have bounded variation and a2 :

[t, t]→R be integrable and nonnegative for almost all t ∈ (t, t). If φ : [t, t]→R has bounded variation and,

∀ t ∈ [t, t] : φ(t) ≤ a1(t)+

∫ t

t
a2(s)φ(s)ds,

then,

∀ t ∈ [t, t] : φ(t)≤ a1(t)+

∫ t

t
a1(s)a2(s)exp

(∫ t

s
a2(σ)dσ

)
ds.

We apply the Lemmas above as in the proof of (Ballard 2000, Thm. 10) to establish that the velocity is bounded

on finite time horizons. Let (q̃+, ˙̃q) : [t, t) → TQ be a right-continuous trajectory of a Lagrangian system subject to

perfect unilateral constraints and with forces that satisfies the bound in (19). Lemma 11 yields for all t ∈ T := [t, t):

1

2

∣∣∣ ˙̃q+
(t)
∣∣∣
2

M
− 1

2

∣∣∣ ˙̃q+
(t)
∣∣∣
2

M
≤
∫ t

t
f(q̃(s), ˙̃q

+
(s)) ˙̃q

+
(s)ds. (131)

Applying Lemma 12 with φ(t) =
∣∣∣ ˙̃q+

(t)
∣∣∣
M

, α =
∣∣∣ ˙̃q+

(t)
∣∣∣
M

, and a(s) =
∣∣∣f(q̃(s), ˙̃q

+
(s))
∣∣∣
M

−1 combined with (19) implies

for t ∈ T : ∣∣∣ ˙̃q+
(t)
∣∣∣
M
≤
∣∣∣ ˙̃q+

(t)
∣∣∣
M
+
∫ t

t

∣∣∣f(q̃(s), ˙̃q
+
(s))
∣∣∣
M

−1
ds

≤
∣∣∣ ˙̃q+

(t)
∣∣∣
M
+
∫ t

t
C
[
1+
∣∣∣ ˙̃q+

(s)
∣∣∣
M
+ dM(q̃(t), q̃(s))

]
ds.

(132)

Recalling that dM(q̃(t), q̃(t))≤ ∫ t
t

∣∣∣ ˙̃q+
(s)
∣∣∣
M

ds we find,

dM(q̃(t), q̃(t))+
∣∣∣ ˙̃q+

(t)
∣∣∣
M
≤
∣∣∣ ˙̃q+

(t)
∣∣∣
M
+C(t − t)+

∫ t

t
(1+C)

[∣∣∣ ˙̃q+
(s)
∣∣∣
M
+ dM(q̃(t), q̃(s))

]
ds. (133)

Applying Lemma 13 with φ(t) = dM(q̃(t), q̃(t))+
∣∣∣ ˙̃q+

(t)
∣∣∣
M

, a1(s) =
∣∣∣ ˙̃q+

(t)
∣∣∣
M
+C(t − t), a2(s) = 1+C yields,

dM(q̃(t), q̃(t))+
∣∣∣ ˙̃q+

(t)
∣∣∣
M
≤ a1(t)+

∫ t

t
a1(s)a2(s)exp

[∫ t

s
a2(σ)dσ

]
ds. (134)

In particular, since the right-hand-side of the inequality is bounded on finite time horizons, velocity is also bounded

on finite time horizons,

v̄ := sup
t∈T

{∣∣∣ ˙̃q+
(t)
∣∣∣
M

}
< ∞. (135)
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E.2 Integration-by-Parts

Suppose (q, q̇) : [t, t]→ TQ satisfies (17). Then left-multiplying by M and rearranging,

M(q)q̈+C(q, q̇)q̇ = ϒ(q, q̇)−N(q, q̇)−AT (q)λ (q, q̇), (136)

where for all i, j ∈ {1, . . . ,q},

Ci j(q, q̇) :=
q

∑
k=1

1

2

(
∂Mi j(q)

∂qk
+

∂Mik(q)

∂q j
− ∂Mk j(q)

∂qi

)
q̇k,

see (Murray et al. 1994, Eqn. 4.23) or (Johnson and Koditschek 2013a, Eqn. 30) for details. Note that for all i ∈
{1, . . . ,q},

[
Mq̈+Cq̇

]i
=

q

∑
j=1

[
Mi jq̈

j
]
+

q

∑
j,k=1

[
1

2

(
∂Mi j(q)

∂qk
+

∂Mik(q)

∂q j
− ∂Mk j(q)

∂qi

)
q̇kq̇ j

]

=
q

∑
j=1

[
Mi jq̈

j
]
+

q

∑
j,k=1

[(
∂Mi j(q)

∂qk
− 1

2

∂Mk j(q)

∂qi

)
q̇kq̇ j

]

=
d

dt

q

∑
j=1

[
Mi jq̇

j
]
−

q

∑
j,k=1

[
1

2

∂Mk j(q)

∂qi
q̇kq̇ j

]
=

d

dt

q

∑
j=1

[
Mi jq̇

j
]
+ C̃i(q, q̇),

where,

C̃i(q, q̇) :=−1

2

q

∑
j,k=1

∂Mk j(q)

∂qi
q̇kq̇ j.

Therefore rearranging (136) we have for each i ∈ {1, . . . ,q},

d

dt

q

∑
j=1

[
Mi jq̇

j
]
= ϒi −N

i − C̃i − (AT λ )i. (137)

Integrating both sides of (137) over the time interval [t, t], reintroducing the dependence on (q, q̇) and time, and

vectorizing over the index i,

M(q(t))q̇(t)−M(q(t))q̇(t) =

∫ t

t

(
ϒ(q(s), q̇(s))−N(q(s), q̇(s))− C̃(q(s), q̇(s)) −A(q(s))T λ (q(s), q̇(s))

)
ds,

as used in (90).

E.3 Proof that constraint forces and impulses are bounded

The following is a transcription of the argument used in the proof of (Ballard 2000, Prop. 18) to show that constraint

forces and impulses are bounded on bounded time intervals.

Given a right-continuous trajectory (q̃, ˙̃q
+
) : [t, t)→ TQ of a Lagrangian system subject to perfect unilateral con-

straints, we assume that: the inertia tensor M is nondegenerate; the position tends to a limit q̄ := limt→t q̃; and the

velocity is bounded by v̄ := supt∈T

{∣∣∣ ˙̃q+
(t)
∣∣∣
M

}
< ∞ where T = [t, t). This ensures there exists a compact neigh-

borhood K ⊂ V such that q̃([t, t)) ⊂ K and hence with B(0,v) ⊂ Rq denoting the closed ball of radius v centered at

the origin, the compact subset K′ := B(0,v)×K ⊂ TV contains (q̃, ˙̃q
+
)([t, t)). This implies the following constants

are finite:

F := max
j∈{1,...,q}

max
(q,q̇)∈K′

∣∣∣ϒ j(q, q̇)−N
j
(q, q̇)

∣∣∣ ,

G := max
j,k,ℓ∈{1,...,q}

max
q∈K

∣∣∣∣
∂Mkℓ(q)

∂q j

∣∣∣∣ .
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Letting σmax and σmin denote the maximum and minimum singular values of M over K, we obtain the follow-

ing bounds:

max
j∈{1,...,q}

max
(q,q̇)∈K′

∣∣∣∣∣
q

∑
k=1

M jk(q)q̇
k

∣∣∣∣∣≤
√

σmaxv,

max
j∈{1,...,q}

max
(q,q̇)∈K′

∣∣q̇ j
∣∣≤ v√

σmin

.

Suppressing dependence on q̃ and ˙̃q
+

, we arrive at the bound that for each j ∈ {1, . . . , |K|},

−
[
M

j
(t) ˙̃q

+
(t)−M

j
(tm) ˙̃q

+
(tm)

]
+
∫ t

tm

ϒ j −N
j − C̃ jds ≤ 2

√
σmaxv̄+

(
F +

q2Gv2

2σmin

)
(t − tm)< ∞,

thus satisfying the condition on (93).
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