• Main.DesignOfATunableStiffnessCompositeLegForDynamicLocomotion

Kod*lab Menu

Internal Links (Login Required)

Kod*lab Publications

Design of a Tunable Stiffness Composite Leg for Dynamic Locomotion

ASME 2009 International Design Engineering Technical Conference

Galloway*, K.C., Clark, J.E.†, and Koditschek, D.E.*
*University of Pennsylvania
†Florida State University

Full PDF | Penn Scholarly Commons

Passively compliant legs have been instrumental in the development of dynamically running legged robots. Having properly tuned leg springs is essential for stable, robust and energetically efficient running at high speeds. Recent simulation studies indicate that having variable stiffness legs, as animals do, can significantly improve the speed and stability of these robots in changing environmental conditions. However, to date, the mechanical complexities of designing usefully robust tunable passive compliance into legs has precluded their implementation on practical running robots. This paper describes a new design of a ”structurally controlled variable stiffness” leg for a hexapedal running robot. This new leg improves on previous designs’ performance and enables runtime modification of leg stiffness in a small, lightweight, and rugged package. Modeling and leg test experiments are presented that characterize the improvement in stiffness range, energy storage, and dynamic coupling properties of these legs. We conclude that this variable stiffness leg design is now ready for implementation and testing on a dynamical running robot.
BibTeX entry
author = {Kevin C. Galloway and Jonathan E. Clark and Daniel E. Koditschek},
collaboration = {},
title = {Design of a Tunable Stiffness Composite Leg for Dynamic Locomotion},
publisher = {ASME},
year = {2009},
journal = {ASME Conference Proceedings},
volume = {2009},
number = {49040},
pages = {215-222},
url = {http://link.aip.org/link/abstract/ASMECP/v2009/i49040/p215/s1},
doi = {10.1115/DETC2009-86847}

Copyright Kodlab, 2017